Recall tracing through the configurations of the even machine earlier. The imaginary mechanism consisting of tape, read/write head, and Turing machine program is really just an intuitive way of visualizing what a Turing machine computation is. Formally, we can define the computation of a Turing machine on a given input as a sequence of configurations—and a configuration in turn is a sequence of symbols (corresponding to the contents of the tape at a given point in the computation), a number indicating the position of the read/write head, and a state. Using these, we can define what the Turing machine M computes on a given input.

Definition tur.1 (Configuration). A configuration of Turing machine $M = \langle Q, \Sigma, q_0, \delta \rangle$ is a triple $\langle C, m, q \rangle$ where

1. $C \in \Sigma^*$ is a finite sequence of symbols from Σ,
2. $m \in \mathbb{N}$ is a number $< \text{len}(C)$, and
3. $q \in Q$

Intuitively, the sequence C is the content of the tape (symbols of all squares from the leftmost square to the last non-blank or previously visited square), m is the number of the square the read/write head is scanning (beginning with 0 being the number of the leftmost square), and q is the current state of the machine.

The potential input for a Turing machine is a sequence of symbols, usually a sequence that encodes a number in some form. The initial configuration of the Turing machine is that configuration in which we start the Turing machine to work on that input: the tape contains the tape end marker immediately followed by the input written on the squares to the right, the read/write head is scanning the leftmost square of the input (i.e., the square to the right of the left end marker), and the mechanism is in the designated start state q_0.

Definition tur.2 (Initial configuration). The initial configuration of M for input $I \in \Sigma^*$ is

$\langle \triangleright \ I, 1, q_0 \rangle$.

The \triangleright symbol is for concatenation—the input string begins immediately to the left end marker.

Definition tur.3. We say that a configuration $\langle C, m, q \rangle$ yields the configuration $\langle C', m', q' \rangle$ in one step (according to M), iff

1. the m-th symbol of C is σ,
2. the instruction set of M specifies $\delta(q, \sigma) = \langle q', \sigma', D \rangle$,
3. the m-th symbol of C' is σ', and
4. a) $D = L$ and $m' = m - 1$ if $m > 0$, otherwise $m' = 0$, or
 b) $D = R$ and $m' = m + 1$, or
 c) $D = N$ and $m' = m$,

5. if $m' = \text{len}(C)$, then $\text{len}(C') = \text{len}(C) + 1$ and the m'-th symbol of C' is 0. Otherwise $\text{len}(C') = \text{len}(C)$.

6. for all i such that $i < \text{len}(C)$ and $i \neq m$, $C'(i) = C(i)$,

Definition tur.4. A run of M on input I is a sequence C_i of configurations of M, where C_0 is the initial configuration of M for input I, and each C_i yields C_{i+1} in one step.

We say that M halts on input I after k steps if $C_k = \langle C, m, q \rangle$, the mth symbol of C is σ, and $\delta(q, \sigma)$ is undefined. In that case, the output of M for input I is O, where O is a string of symbols not ending in 0 such that $C = \triangleright \leadsto O \leftarrow 0^j$ for some $j \in \mathbb{N}$. (0^j is a sequence of j 0’s.)

According to this definition, the output O of M always ends in a symbol other than 0, or, if at time k the entire tape is filled with 0 (except for the leftmost \triangleright), O is the empty string.

Photo Credits

Bibliography