Chapter udf

The Size of Sets

This chapter discusses enumerations, countability and uncountability. Several sections come in two versions: a more elementary one, that takes enumerations to be lists, or surjections from \mathbb{Z}^+; and a more abstract one that defines enumerations as bijections with \mathbb{N}.

siz.1 Introduction

When Georg Cantor developed set theory in the 1870s, one of his aims was to make palatable the idea of an infinite collection—an actual infinity, as the medievals would say. A key part of this was his treatment of the size of different sets. If a, b and c are all distinct, then the set $\{a, b, c\}$ is intuitively larger than $\{a, b\}$. But what about infinite sets? Are they all as large as each other? It turns out that they are not.

The first important idea here is that of an enumeration. We can list every finite set by listing all its elements. For some infinite sets, we can also list all their elements if we allow the list itself to be infinite. Such sets are called enumerable. Cantor’s surprising result, which we will fully understand by the end of this chapter, was that some infinite sets are not enumerable.

siz.2 Enumerations and Enumerable Sets

This section discusses enumerations of sets, defining them as surjections from \mathbb{Z}^+. It does things slowly, for readers with little mathematical background. An alternative, terser version is given in section siz.11, which defines enumerations differently: as bijections with \mathbb{N} (or an initial segment).
We’ve already given examples of sets by listing their elements. Let’s discuss in more general terms how and when we can list the elements of a set, even if that set is infinite.

Definition siz.1 (Enumeration, informally). Informally, an *enumeration* of a set \(A \) is a list (possibly infinite) of elements of \(A \) such that every element of \(A \) appears on the list at some finite position. If \(A \) has an enumeration, then \(A \) is said to be *enumerable*.

A couple of points about enumerations:

1. We count as enumerations only lists which have a beginning and in which every element other than the first has a single element immediately preceding it. In other words, there are only finitely many elements between the first element of the list and any other element. In particular, this means that every element of an enumeration has a finite position: the first element has position 1, the second position 2, etc.

2. We can have different enumerations of the same set \(A \) which differ by the order in which the elements appear: 4, 1, 25, 16, 9 enumerates the (set of the) first five square numbers just as well as 1, 4, 9, 16, 25 does.

3. Redundant enumerations are still enumerations: 1, 1, 2, 2, 3, 3, \ldots enumerates the same set as 1, 2, 3, \ldots does.

4. Order and redundancy *do* matter when we specify an enumeration: we can enumerate the positive integers beginning with 1, 2, 3, 1, \ldots, but the pattern is easier to see when enumerated in the standard way as 1, 2, 3, 4, \ldots.

5. Enumerations must have a beginning: \ldots, 3, 2, 1 is not an enumeration of the positive integers because it has no first element. To see how this follows from the informal definition, ask yourself, “at what position in the list does the number 76 appear?”

6. The following is not an enumeration of the positive integers: 1, 3, 5, \ldots, 2, 4, 6, \ldots. The problem is that the even numbers occur at places \(\infty + 1, \infty + 2, \infty + 3 \), rather than at finite positions.

7. The empty set is enumerable: it is enumerated by the empty list!

Proposition siz.2. If \(A \) has an enumeration, it has an enumeration without repetitions.

Proof. Suppose \(A \) has an enumeration \(x_1, x_2, \ldots \) in which each \(x_i \) is an element of \(A \). We can remove repetitions from an enumeration by removing repeated elements. For instance, we can turn the enumeration into a new one in which we list \(x_i \) if it is an element of \(A \) that is not among \(x_1, \ldots, x_{i-1} \) or remove \(x_i \) from the list if it already appears among \(x_1, \ldots, x_{i-1} \). \(\square \)
The last argument shows that in order to get a good handle on enumerations and enumerable sets and to prove things about them, we need a more precise definition. The following provides it.

Definition siz.3 (Enumeration, formally). An *enumeration* of a set $A \neq \emptyset$ is any surjective function $f : \mathbb{Z}^+ \rightarrow A$.

Let’s convince ourselves that the formal definition and the informal definition using a possibly infinite list are equivalent. First, any surjective function from \mathbb{Z}^+ to a set A enumerates A. Such a function determines an enumeration as defined informally above: the list $f(1), f(2), f(3), \ldots$. Since f is surjective, every element of A is guaranteed to be the value of $f(n)$ for some $n \in \mathbb{Z}^+$. Hence, every element of A appears at some finite position in the list. Since the function may not be injective, the list may be redundant, but that is acceptable (as noted above).

On the other hand, given a list that enumerates all elements of A, we can define a surjective function $f : \mathbb{Z}^+ \rightarrow A$ by letting $f(n)$ be the nth element of the list, or the final element of the list if there is no nth element. The only case where this does not produce a surjective function is when A is empty, and hence the list is empty. So, every non-empty list determines a surjective function $f : \mathbb{Z}^+ \rightarrow A$.

Definition siz.4. A set A is enumerable iff it is empty or has an enumeration.

Example siz.5. A function enumerating the positive integers (\mathbb{Z}^+) is simply the identity function given by $f(n) = n$. A function enumerating the natural numbers \mathbb{N} is the function $g(n) = n - 1$.

Example siz.6. The functions $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ and $g : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ given by

$\begin{align*}
 f(n) &= 2n \\
 g(n) &= 2n - 1
\end{align*}$

enumerate the even positive integers and the odd positive integers, respectively. However, neither function is an enumeration of \mathbb{Z}^+, since neither is surjective.

Problem siz.1. Define an enumeration of the positive squares $1, 4, 9, 16, \ldots$

Example siz.7. The function $f(n) = (-1)^n \lceil \frac{n-1}{2} \rceil$ (where $\lceil x \rceil$ denotes the ceiling function, which rounds x up to the nearest integer) enumerates the set of integers \mathbb{Z}. Notice how f generates the values of \mathbb{Z} by “hopping” back and forth between positive and negative integers:

$\begin{align*}
 f(1) &= 1 \\
 f(2) &= 0 \\
 f(3) &= -1 \\
 f(4) &= -2 \\
 f(5) &= 2 \\
 f(6) &= -3 \\
 f(7) &= 3 \\
 &\vdots
\end{align*}$
You can also think of f as defined by cases as follows:

\[
 f(n) = \begin{cases}
 0 & \text{if } n = 1 \\
 n/2 & \text{if } n \text{ is even} \\
 -(n-1)/2 & \text{if } n \text{ is odd and } > 1
 \end{cases}
\]

Problem siz.2. Show that if A and B are enumerable, so is $A \cup B$. To do this, suppose there are surjective functions $f: \mathbb{Z}^+ \to A$ and $g: \mathbb{Z}^+ \to B$, and define a surjective function $h: \mathbb{Z}^+ \to A \cup B$ and prove that it is surjective. Also consider the cases where A or $B = \emptyset$.

Problem siz.3. Show that if $B \subseteq A$ and A is enumerable, so is B. To do this, suppose there is a surjective function $f: \mathbb{Z}^+ \to A$. Define a surjective function $g: \mathbb{Z}^+ \to B$ and prove that it is surjective. What happens if $B = \emptyset$?

Problem siz.4. Show by induction on n that if A_1, A_2, \ldots, A_n are all enumerable, so is $A_1 \cup \cdots \cup A_n$. You may assume the fact that if two sets A and B are enumerable, so is $A \cup B$.

Although it is perhaps more natural when listing the elements of a set to start counting from the 1st element, mathematicians like to use the natural numbers \mathbb{N} for counting things. They talk about the 0th, 1st, 2nd, and so on, elements of a list. Correspondingly, we can define an enumeration as a surjective function from \mathbb{N} to A. Of course, the two definitions are equivalent.

Proposition siz.8. There is a surjection $f: \mathbb{Z}^+ \to A$ iff there is a surjection $g: \mathbb{N} \to A$.

Proof. Given a surjection $f: \mathbb{Z}^+ \to A$, we can define $g(n) = f(n+1)$ for all $n \in \mathbb{N}$. It is easy to see that $g: \mathbb{N} \to A$ is surjective. Conversely, given a surjection $g: \mathbb{N} \to A$, define $f(n) = g(n-1)$. \qed

This gives us the following result:

Corollary siz.9. A set A is enumerable iff it is empty or there is a surjective function $f: \mathbb{N} \to A$.

We discussed above than an list of elements of a set A can be turned into a list without repetitions. This is also true for enumerations, but a bit harder to formulate and prove rigorously. Any function $f: \mathbb{Z}^+ \to A$ must be defined for all $n \in \mathbb{Z}^+$. If there are only finitely many elements in A then we clearly cannot have a function defined on the infinitely many elements of \mathbb{Z}^+ that takes as values all the elements of A but never takes the same value twice. In that case, i.e., in the case where the list without repetitions is finite, we must choose a different domain for f, one with only finitely many elements. Not having repetitions means that f must be injective. Since it is also surjective, we are looking for a bijection between some finite set $\{1, \ldots, n\}$ or \mathbb{Z}^+ and A.
Proposition siz.10. If \(f: \mathbb{Z}^+ \to A \) is surjective (i.e., an enumeration of \(A \)), there is a bijection \(g: \mathbb{Z} \to A \) where \(Z \) is either \(\mathbb{Z}^+ \) or \(\{1, \ldots, n\} \) for some \(n \in \mathbb{Z}^+ \).

Proof. We define the function \(g \) recursively: Let \(g(1) = f(1) \). If \(g(i) \) has already been defined, let \(g(i+1) \) be the first value of \(f(1), f(2), \ldots \) not already among \(g(1), \ldots, g(i) \), if there is one. If \(A \) has just \(n \) elements, then \(g(1), \ldots, g(n) \) are all defined, and so we have defined a function \(g: \{1, \ldots, n\} \to A \). If \(A \) has infinitely many elements, then for any \(i \) there must be an element of \(A \) in the enumeration \(f(1), f(2), \ldots \) which is not already among \(g(1), \ldots, g(i) \). In this case we have defined a function \(g: \mathbb{Z} \to A \).

The function \(g \) is surjective, since any element of \(A \) is among \(f(1), f(2), \ldots \) (since \(f \) is surjective) and so will eventually be a value of \(g(i) \) for some \(i \). It is also injective, since if there were \(j < i \) such that \(g(j) = g(i) \), then \(g(i) \) would already be among \(g(1), \ldots, g(i-1) \), contrary to how we defined \(g \). \(\Box \)

Corollary siz.11. A set \(A \) is enumerable iff it is empty or there is a bijection \(f: N \to A \) where either \(N = \mathbb{N} \) or \(N = \{0, \ldots, n\} \) for some \(n \in \mathbb{N} \).

Proof. \(A \) is enumerable iff \(A \) is empty or there is a surjective \(f: \mathbb{Z}^+ \to A \). By Proposition siz.10, the latter holds iff there is a bijective function \(f: \mathbb{Z} \to A \) where \(Z = \mathbb{Z}^+ \) or \(Z = \{1, \ldots, n\} \) for some \(n \in \mathbb{Z}^+ \). By the same argument as in the proof of Proposition siz.8, that in turn is the case iff there is a bijection \(g: N \to A \) where either \(N = \mathbb{N} \) or \(N = \{0, \ldots, n-1\} \). \(\Box \)

Problem siz.5. According to Definition siz.4, a set \(A \) is enumerable iff \(A = \emptyset \) or there is a surjective \(f: \mathbb{Z}^+ \to A \). It is also possible to define “enumerable set” precisely by: a set is enumerable iff there is an injective function \(g: A \to \mathbb{Z}^+ \). Show that the definitions are equivalent, i.e., show that there is an injective function \(g: A \to \mathbb{Z}^+ \) iff either \(A = \emptyset \) or there is a surjective \(f: \mathbb{Z}^+ \to A \).

siz.3 Cantor’s Zig-Zag Method

We’ve already considered some “easy” enumerations. Now we will consider something a bit harder. Consider the set of pairs of natural numbers defined by:

\[N \times N = \{ (n, m) : n, m \in \mathbb{N} \} \]

We can organize these ordered pairs into an array, like so:

\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 & 3 & \cdots \\
\hline
0 & (0,0) & (0,1) & (0,2) & (0,3) & \cdots \\
1 & (1,0) & (1,1) & (1,2) & (1,3) & \cdots \\
2 & (2,0) & (2,1) & (2,2) & (2,3) & \cdots \\
3 & (3,0) & (3,1) & (3,2) & (3,3) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{array}
\]
Clearly, every ordered pair in $\mathbb{N} \times \mathbb{N}$ will appear exactly once in the array. In particular, (n, m) will appear in the nth row and mth column. But how do we organize the elements of such an array into a “one-dimensional” list? The pattern in the array below demonstrates one way to do this (although of course there are many other options):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>13</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

This pattern is called Cantor’s zig-zag method. It enumerates $\mathbb{N} \times \mathbb{N}$ as follows:

$$(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), \ldots$$

And this establishes the following:

Proposition siz.12. $\mathbb{N} \times \mathbb{N}$ is enumerable.

Proof. Let $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ take each $k \in \mathbb{N}$ to the tuple $(n, m) \in \mathbb{N} \times \mathbb{N}$ such that k is the value of the nth row and mth column in Cantor’s zig-zag array. □

This technique also generalises rather nicely. For example, we can use it to enumerate the set of ordered triples of natural numbers, i.e.:

$$\mathbb{N} \times \mathbb{N} \times \mathbb{N} = \{(n, m, k) : n, m, k \in \mathbb{N}\}$$

We think of $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ as the Cartesian product of $\mathbb{N} \times \mathbb{N}$ with \mathbb{N}, that is,

$$\mathbb{N}^3 = (\mathbb{N} \times \mathbb{N}) \times \mathbb{N} = \{(n, m, k) : n, m, k \in \mathbb{N}\}$$

and thus we can enumerate \mathbb{N}^3 with an array by labelling one axis with the enumeration of \mathbb{N}, and the other axis with the enumeration of \mathbb{N}^2:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, 0)</td>
<td>(0, 0, 0)</td>
<td>(0, 0, 1)</td>
<td>(0, 0, 2)</td>
<td>(0, 0, 3)</td>
</tr>
<tr>
<td>1</td>
<td>(0, 1)</td>
<td>(0, 1, 0)</td>
<td>(0, 1, 1)</td>
<td>(0, 1, 2)</td>
<td>(0, 1, 3)</td>
</tr>
<tr>
<td>2</td>
<td>(1, 0)</td>
<td>(1, 0, 0)</td>
<td>(1, 0, 1)</td>
<td>(1, 0, 2)</td>
<td>(1, 0, 3)</td>
</tr>
<tr>
<td>3</td>
<td>(0, 2)</td>
<td>(0, 2, 0)</td>
<td>(0, 2, 1)</td>
<td>(0, 2, 2)</td>
<td>(0, 2, 3)</td>
</tr>
</tbody>
</table>

Thus, by using a method like Cantor’s zig-zag method, we may similarly obtain an enumeration of \mathbb{N}^3. And we can keep going, obtaining enumerations of \mathbb{N}^n for any natural number n. So, we have:
Proposition siz.13. \(\mathbb{N}^n \) is enumerable, for every \(n \in \mathbb{N} \).

Problem siz.6. Show that \((\mathbb{Z}^+)^n\) is enumerable, for every \(n \in \mathbb{N} \).

Problem siz.7. Show that \((\mathbb{Z}^+)^*\) is enumerable. You may assume Problem siz.6.

siz.4 Pairing Functions and Codes

Cantor’s zig-zag method makes the enumerability of \(\mathbb{N}^n \) visually evident. But let us focus on our array depicting \(\mathbb{N}^2 \). Following the zig-zag line in the array and counting the places, we can check that \(\langle 1, 2 \rangle \) is associated with the number 7. However, it would be nice if we could compute this more directly. That is, it would be nice to have the inverse of the zig-zag enumeration, \(g : \mathbb{N}^2 \to \mathbb{N} \), such that

\[
g(\langle 0, 0 \rangle) = 0, \quad g(\langle 0, 1 \rangle) = 1, \quad g(\langle 1, 0 \rangle) = 2, \quad \ldots, \quad g(\langle 1, 2 \rangle) = 7, \quad \ldots
\]

This would enable us to calculate exactly where \(\langle n, m \rangle \) will occur in our enumeration.

In fact, we can define \(g \) directly by making two observations. First: if the \(n \)th row and \(m \)th column contains value \(v \), then the \((n+1) \)st row and \((m-1) \)st column contains value \(v+1 \). Second: the first row of our enumeration consists of the triangular numbers, starting with 0, 1, 3, 6, etc. The \(k \)th triangular number is the sum of the natural numbers \(< k \), which can be computed as \(k(k+1)/2 \). Putting these two observations together, consider this function:

\[
g(n, m) = \frac{(n + m + 1)(n + m)}{2} + n
\]

We often just write \(g(n, m) \) rather than \(g(\langle n, m \rangle) \), since it is easier on the eyes. This tells you first to determine the \((n + m) \)th triangle number, and then add \(n \) to it. And it populates the array in exactly the way we would like. So in particular, the pair \(\langle 1, 2 \rangle \) is sent to \(\frac{4\times3}{2} + 1 = 7 \).

This function \(g \) is the inverse of an enumeration of a set of pairs. Such functions are called pairing functions.

Definition siz.14 (Pairing function). A function \(f : A \times B \to \mathbb{N} \) is an arithmetical pairing function if \(f \) is injective. We also say that \(f \) encodes \(A \times B \), and that \(f(x, y) \) is the code for \(\langle x, y \rangle \).

We can use pairing functions to encode, e.g., pairs of natural numbers; or, in other words, we can represent each pair of elements using a single number. Using the inverse of the pairing function, we can decode the number, i.e., find out which pair it represents.

Problem siz.8. Give an enumeration of the set of all non-negative rational numbers.
Problem size 9. Show that \mathbb{Q} is enumerable. Recall that any rational number can be written as a fraction z/m with $z \in \mathbb{Z}$, $m \in \mathbb{N}^+$.

Problem size 10. Define an enumeration of \mathbb{B}^*.

Problem size 11. Recall from your introductory logic course that each possible truth table expresses a truth function. In other words, the truth functions are all functions from $\mathbb{B}^k \rightarrow \mathbb{B}$ for some k. Prove that the set of all truth functions is enumerable.

Problem size 12. Show that the set of all finite subsets of an arbitrary infinite enumerable set is enumerable.

Problem size 13. A subset of \mathbb{N} is said to be cofinite iff it is the complement of a finite set \mathbb{N}; that is, $A \subseteq \mathbb{N}$ is cofinite iff $\mathbb{N} \setminus A$ is finite. Let I be the set whose elements are exactly the finite and cofinite subsets of \mathbb{N}. Show that I is enumerable.

Problem size 14. Show that the enumerable union of enumerable sets is enumerable. That is, whenever A_1, A_2, \ldots are sets, and each A_i is enumerable, then the union $\bigcup_{i=1}^{\infty} A_i$ of all of them is also enumerable. [NB: this is hard!]

Problem size 15. Let $f: A \times B \rightarrow \mathbb{N}$ be an arbitrary pairing function. Show that the inverse of f is an enumeration of $A \times B$.

Problem size 16. Specify a function that encodes \mathbb{N}^3.

size 5 An Alternative Pairing Function

There are other enumerations of \mathbb{N}^2 that make it easier to figure out what their inverses are. Here is one. Instead of visualizing the enumeration in an array, start with the list of positive integers associated with (initially) empty spaces. Imagine filling these spaces successively with pairs $\langle n, m \rangle$ as follows. Starting with the pairs that have 0 in the first place (i.e., pairs $\langle 0, m \rangle$), put the first (i.e., $\langle 0, 0 \rangle$) in the first empty place, then skip an empty space, put the second (i.e., $\langle 0, 2 \rangle$) in the next empty place, skip one again, and so forth. The (incomplete) beginning of our enumeration now looks like this

$$
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\
\langle 0, 1 \rangle & \langle 0, 2 \rangle & \langle 0, 3 \rangle & \langle 0, 4 \rangle & \langle 0, 5 \rangle & \ldots \\
\end{array}
$$

Repeat this with pairs $\langle 1, m \rangle$ for the place that still remain empty, again skipping every other empty place:

$$
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\
\langle 0, 0 \rangle & \langle 1, 0 \rangle & \langle 0, 1 \rangle & \langle 0, 2 \rangle & \langle 1, 1 \rangle & \langle 0, 3 \rangle & \langle 0, 4 \rangle & \langle 1, 2 \rangle & \ldots \\
\end{array}
$$
Enter pairs \((2, m) \), \((2, m) \), etc., in the same way. Our completed enumeration thus starts like this:

\[
1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad \ldots
\]

\[
\langle 0, 0 \rangle \quad \langle 1, 0 \rangle \quad \langle 0, 1 \rangle \quad \langle 2, 0 \rangle \quad \langle 0, 2 \rangle \quad \langle 1, 1 \rangle \quad \langle 0, 3 \rangle \quad \langle 3, 0 \rangle \quad \langle 0, 4 \rangle \quad \langle 1, 2 \rangle \quad \ldots
\]

If we number the cells in the array above according to this enumeration, we will not find a neat zig-zag line, but this arrangement:

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
0 & 1 & 3 & 5 & 7 & 9 & 11 & \ldots \\
1 & 2 & 6 & 10 & 14 & 18 & \ldots & \ldots \\
2 & 4 & 12 & 20 & 28 & \ldots & \ldots & \ldots \\
3 & 8 & 24 & 40 & \ldots & \ldots & \ldots & \ldots & \ldots \\
4 & 16 & 48 & \ldots \\
5 & 32 & \ldots \\
\vdots & \vdots \\
\end{array}
\]

We can see that the pairs in row 0 are in the odd numbered places of our enumeration, i.e., pair \((0, m) \) is in place \(2m + 1 \); pairs in the second row, \((1, m) \), are in places whose number is the double of an odd number, specifically, \(2 \cdot (2m + 1) \); pairs in the third row, \((2, m) \), are in places whose number is four times an odd number, \(4 \cdot (2m + 1) \); and so on. The factors of \((2m + 1) \) for each row, \(1, 2, 4, 8, \ldots \), are exactly the powers of 2: \(1 = 2^0 \), \(2 = 2^1 \), \(4 = 2^2 \), \(8 = 2^3 \), \ldots \) In fact, the relevant exponent is always the first member of the pair in question. Thus, for pair \((n, m) \) the factor is \(2^n \). This gives us the general formula: \(2^n \cdot (2m + 1) \). However, this is a mapping of pairs to positive integers, i.e., \((0, 0) \) has position 1. If we want to begin at position 0 we must subtract 1 from the result. This gives us:

Example siz.15. The function \(h : \mathbb{N}^2 \to \mathbb{N} \) given by

\[
h(n, m) = 2^n(2m + 1) - 1
\]

is a pairing function for the set of pairs of natural numbers \(\mathbb{N}^2 \).

Accordingly, in our second enumeration of \(\mathbb{N}^2 \), the pair \((0, 0) \) has code \(h(0, 0) = 2^0(2 \cdot 0 + 1) - 1 = 0 \); \((1, 2) \) has code \(2^1 \cdot (2 \cdot 2 + 1) - 1 = 2 \cdot 5 - 1 = 9 \); \((2, 6) \) has code \(2^2 \cdot (2 \cdot 6 + 1) - 1 = 51 \).

Sometimes it is enough to encode pairs of natural numbers \(\mathbb{N}^2 \) without requiring that the encoding is surjective. Such encodings have inverses that are only partial functions.

Example siz.16. The function \(j : \mathbb{N}^2 \to \mathbb{N}^+ \) given by

\[
j(n, m) = 2^n3^m
\]

is an injective function \(\mathbb{N}^2 \to \mathbb{N} \).

Explanation
This section proves the non-enumerability of \(B^\omega \) and \(\wp(\mathbb{Z}^+) \) using the definition in section siz.2. It is designed to be a little more elementary and a little more detailed than the version in section siz.11.

Some sets, such as the set \(\mathbb{Z}^+ \) of positive integers, are infinite. So far we’ve seen examples of infinite sets which were all enumerable. However, there are also infinite sets which do not have this property. Such sets are called non-enumerable.

First of all, it is perhaps already surprising that there are non-enumerable sets. For any enumerable set \(A \) there is a surjective function \(f: \mathbb{Z}^+ \to A \). If a set is non-enumerable there is no such function. That is, no function mapping the infinitely many elements of \(\mathbb{Z}^+ \) to \(A \) can exhaust all of \(A \). So there are “more” elements of \(A \) than the infinitely many positive integers.

How would one prove that a set is non-enumerable? You have to show that no such surjective function can exist. Equivalently, you have to show that the elements of \(A \) cannot be enumerated in a one way infinite list. The best way to do this is to show that every list of elements of \(A \) must leave at least one element out; or that no function \(f: \mathbb{Z}^+ \to A \) can be surjective. We can do this using Cantor’s diagonal method. Given a list of elements of \(A \), say, \(x_1, x_2, \ldots \), we construct another element of \(A \) which, by its construction, cannot possibly be on that list.

Our first example is the set \(B^\omega \) of all infinite, non-gappy sequences of 0’s and 1’s.

Theorem siz.17. \(B^\omega \) is non-enumerable.

Proof. Suppose, by way of contradiction, that \(B^\omega \) is enumerable, i.e., suppose that there is a list \(s_1, s_2, s_3, s_4, \ldots \) of all elements of \(B^\omega \). Each of these \(s_i \) is itself an infinite sequence of 0’s and 1’s. Let’s call the \(j \)-th element of the \(i \)-th sequence in this list \(s_i(j) \). Then the \(i \)-th sequence \(s_i \) is

\[
\begin{align*}
 s_i(1), s_i(2), s_i(3), \ldots
\end{align*}
\]

We may arrange this list, and the elements of each sequence \(s_i \) in it, in an array:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(s_1(1))</td>
<td>(s_1(2))</td>
<td>(s_1(3))</td>
<td>(s_1(4))</td>
</tr>
<tr>
<td>2</td>
<td>(s_2(1))</td>
<td>(s_2(2))</td>
<td>(s_2(3))</td>
<td>(s_2(4))</td>
</tr>
<tr>
<td>3</td>
<td>(s_3(1))</td>
<td>(s_3(2))</td>
<td>(s_3(3))</td>
<td>(s_3(4))</td>
</tr>
<tr>
<td>4</td>
<td>(s_4(1))</td>
<td>(s_4(2))</td>
<td>(s_4(3))</td>
<td>(s_4(4))</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
The labels down the side give the number of the sequence in the list s_1, s_2, \ldots; the numbers across the top label the elements of the individual sequences. For instance, $s_1(1)$ is a name for whatever number, a 0 or a 1, is the first element in the sequence s_1, and so on.

Now we construct an infinite sequence, σ, of 0’s and 1’s which cannot possibly be on this list. The definition of σ will depend on the list s_1, s_2, \ldots. Any infinite list of infinite sequences of 0’s and 1’s gives rise to an infinite sequence σ which is guaranteed to not appear on the list.

To define σ, we specify what all its elements are, i.e., we specify $\sigma(n)$ for all $n \in \mathbb{Z}^+$. We do this by reading down the diagonal of the array above (hence the name “diagonal method”) and then changing every 1 to a 0 and every 0 to a 1. More abstractly, we define $\sigma(n)$ to be 0 or 1 according to whether the n-th element of the diagonal, $s_n(n)$, is 1 or 0.

$$\sigma(n) = \begin{cases} 1 & \text{if } s_n(n) = 0 \\ 0 & \text{if } s_n(n) = 1. \end{cases}$$

If you like formulas better than definitions by cases, you could also define $\sigma(n) = 1 - s_n(n)$.

Clearly σ is an infinite sequence of 0’s and 1’s, since it is just the mirror sequence to the sequence of 0’s and 1’s that appear on the diagonal of our array. So σ is an element of \mathcal{B}^ω. But it cannot be on the list s_1, s_2, \ldots Why not?

It can’t be the first sequence in the list, s_1, because it differs from s_1 in the first element. Whatever $s_1(1)$ is, we defined $\sigma(1)$ to be the opposite. It can’t be the second sequence in the list, because σ differs from s_2 in the second element: if $s_2(2)$ is 0, $\sigma(2)$ is 1, and vice versa. And so on.

More precisely: if σ were on the list, there would be some k so that $\sigma = s_k$.

Two sequences are identical iff they agree at every place, i.e., for any n, $\sigma(n) = s_k(n)$. So in particular, taking $n = k$ as a special case, $\sigma(k) = s_k(k)$ would have to hold. $s_k(k)$ is either 0 or 1. If it is 0 then $\sigma(k)$ must be 1—that’s how we defined σ. But if $s_k(k) = 1$ then, again because of the way we defined σ, $\sigma(k) = 0$. In either case $\sigma(k) \neq s_k(k)$.

We started by assuming that there is a list of elements of \mathcal{B}^ω, s_1, s_2, \ldots From this list we constructed a sequence σ which we proved cannot be on the list. But it definitely is a sequence of 0’s and 1’s if all the s_i are sequences of 0’s and 1’s, i.e., $\sigma \in \mathcal{B}^\omega$. This shows in particular that there can be no list of all elements of \mathcal{B}^ω, since for any such list we could also construct a sequence σ guaranteed to not be on the list, so the assumption that there is a list of all sequences in \mathcal{B}^ω leads to a contradiction.

This proof method is called “diagonalization” because it uses the diagonal of the array to define σ. Diagonalization need not involve the presence of an array: we can show that sets are not enumerable by using a similar idea even when no array and no actual diagonal is involved.
Proof. We proceed in the same way, by showing that for every list of subsets of \(\mathbb{Z}^+ \) there is a subset of \(\mathbb{Z}^+ \) which cannot be on the list. Suppose the following is a given list of subsets of \(\mathbb{Z}^+ \):

\[
Z_1, Z_2, Z_3, \ldots
\]

We now define a set \(\overline{Z} \) such that for any \(n \in \mathbb{Z}^+ \), \(n \in \overline{Z} \) iff \(n \notin Z_n \):

\[
\overline{Z} = \{ n \in \mathbb{Z}^+ : n \notin Z_n \}
\]

\(\overline{Z} \) is clearly a set of positive integers, since by assumption each \(Z_n \) is, and thus \(\overline{Z} \in \wp(\mathbb{Z}^+) \). But \(\overline{Z} \) cannot be on the list. To show this, we’ll establish that for each \(k \in \mathbb{Z}^+ \), \(\overline{Z} \neq Z_k \).

So let \(k \in \mathbb{Z}^+ \) be arbitrary. We’ve defined \(\overline{Z} \) so that for any \(n \in \mathbb{Z}^+ \), \(n \in \overline{Z} \) iff \(n \notin Z_n \). In particular, taking \(n = k \), \(k \in \overline{Z} \) iff \(k \notin Z_k \). But this shows that \(\overline{Z} \neq Z_k \), since \(k \) is an element of one but not the other, and so \(\overline{Z} \) and \(Z_k \) have different elements. Since \(k \) was arbitrary, \(\overline{Z} \) is not on the list \(Z_1, Z_2, \ldots \).

The preceding proof did not mention a diagonal, but you can think of it as involving a diagonal if you picture it this way: Imagine the sets \(Z_1, Z_2, \ldots \), written in an array, where each element \(j \in Z_i \) is listed in the \(j \)-th column. Say the first four sets on that list are \(\{1, 2, 3, \ldots\} \), \(\{2, 4, 6, \ldots\} \), \(\{1, 2, 5\} \), and \(\{3, 4, 5, \ldots\} \). Then the array would begin with

\[
\begin{align*}
Z_1 &= \{ 1, 2, 3, 4, 5, 6, \ldots \} \\
Z_2 &= \{ 2, 4, 6, \ldots \} \\
Z_3 &= \{ 1, 2, 5 \} \\
Z_4 &= \{ 3, 4, 5, 6, \ldots \} \\
\vdots & \quad \vdots
\end{align*}
\]

Then \(\overline{Z} \) is the set obtained by going down the diagonal, leaving out any numbers that appear along the diagonal and include those \(j \) where the array has a gap in the \(j \)-th row/column. In the above case, we would leave out 1 and 2, include 3, leave out 4, etc.

Problem siz.17. Show that \(\wp(\mathbb{N}) \) is non-enumerable by a diagonal argument.

Problem siz.18. Show that the set of functions \(f : \mathbb{Z}^+ \to \mathbb{Z}^+ \) is non-enumerable by an explicit diagonal argument. That is, show that if \(f_1, f_2, \ldots \), is a list of functions and each \(f_i : \mathbb{Z}^+ \to \mathbb{Z}^+ \), then there is some \(\bar{f} : \mathbb{Z}^+ \to \mathbb{Z}^+ \) not on this list.

siz.7 Reduction
This section proves non-enumerability by reduction, matching the results in section siz.6. An alternative, slightly more condensed version matching the results in section siz.12 is provided in section siz.13.

We showed \(\wp(\mathbb{Z}^+) \) to be non-enumerable by a diagonalization argument. We already had a proof that \(B^\omega \), the set of all infinite sequences of 0s and 1s, is non-enumerable. Here’s another way we can prove that \(B^\omega \) is non-enumerable: Show that if \(\wp(\mathbb{Z}^+) \) is enumerable then \(B^\omega \) is also enumerable. Since we know \(B^\omega \) is not enumerable, \(\wp(\mathbb{Z}^+) \) can’t be either. This is called reducing one problem to another—in this case, we reduce the problem of enumerating \(B^\omega \) to the problem of enumerating \(\wp(\mathbb{Z}^+) \). A solution to the latter—an enumeration of \(\wp(\mathbb{Z}^+) \)—would yield a solution to the former—an enumeration of \(B^\omega \).

How do we reduce the problem of enumerating a set \(B \) to that of enumerating a set \(A \)? We provide a way of turning an enumeration of \(A \) into an enumeration of \(B \). The easiest way to do that is to define a surjective function \(f: A \to B \). If \(x_1, x_2, \ldots \) enumerates \(A \), then \(f(x_1), f(x_2), \ldots \) would enumerate \(B \). In our case, we are looking for a surjective function \(f: \wp(\mathbb{Z}^+) \to B^\omega \).

Problem siz.19. Show that if there is an injective function \(g: B \to A \), and \(B \) is non-enumerable, then so is \(A \). Do this by showing how you can use \(g \) to turn an enumeration of \(A \) into one of \(B \).

Proof of Theorem siz.18 by reduction. Suppose that \(\wp(\mathbb{Z}^+) \) were enumerable, and thus that there is an enumeration of it, \(Z_1, Z_2, Z_3, \ldots \).

Define the function \(f: \wp(\mathbb{Z}^+) \to B^\omega \) by letting \(f(Z) \) be the sequence \(s_k \) such that \(s_k(n) = 1 \) iff \(n \in Z \), and \(s_k(n) = 0 \) otherwise. This clearly defines a function, since whenever \(Z \subseteq \mathbb{Z}^+ \), any \(n \in \mathbb{Z}^+ \) either is an element of \(Z \) or isn’t. For instance, the set \(\{ 2, 4, 6, \ldots \} \) of positive even numbers gets mapped to the sequence 010101 \ldots, the empty set gets mapped to 0000\ldots and the set \(\mathbb{Z}^+ \) itself to 1111\ldots.

It also is surjective: Every sequence of 0s and 1s corresponds to some set of positive integers, namely the one which has as its members those integers corresponding to the places where the sequence has 1s. More precisely, suppose \(s \in B^\omega \). Define \(Z \subseteq \mathbb{Z}^+ \) by:

\[
Z = \{ n \in \mathbb{Z}^+: s(n) = 1 \}
\]

Then \(f(Z) = s \), as can be verified by consulting the definition of \(f \).

Now consider the list

\[
f(Z_1), f(Z_2), f(Z_3), \ldots
\]

Since \(f \) is surjective, every member of \(B^\omega \) must appear as a value of \(f \) for some argument, and so must appear on the list. This list must therefore enumerate all of \(B^\omega \).

So if \(\wp(\mathbb{Z}^+) \) were enumerable, \(B^\omega \) would be enumerable. But \(B^\omega \) is non-enumerable (Theorem siz.17). Hence \(\wp(\mathbb{Z}^+) \) is non-enumerable. \(\square \)
It is easy to be confused about the direction the reduction goes in. For instance, a surjective function \(g : \mathbb{B}^\omega \to B \) does not establish that \(B \) is non-enumerable. (Consider \(g : \mathbb{B}^\omega \to \mathbb{B} \) defined by \(g(s) = s(1) \), the function that maps a sequence of 0’s and 1’s to its first element. It is surjective, because some sequences start with 0 and some start with 1. But \(\mathbb{B} \) is finite.) Note also that the function \(f \) must be surjective, or otherwise the argument does not go through: \(f(x_1), f(x_2), \ldots \) would then not be guaranteed to include all the elements of \(B \). For instance,

\[
h(n) = 000\ldots0
\]

defines a function \(h : \mathbb{Z}^+ \to \mathbb{B}^\omega \), but \(\mathbb{Z}^+ \) is enumerable.

Problem siz.20. Show that the set of all sets of pairs of positive integers is non-enumerable by a reduction argument.

Problem siz.21. Show that the set \(X \) of all functions \(f : \mathbb{N} \to \mathbb{N} \) is non-enumerable by a reduction argument (Hint: give a surjective function from \(X \) to \(\mathbb{B}^\omega \)).

Problem siz.22. Show that \(\mathbb{N}^\omega \), the set of infinite sequences of natural numbers, is non-enumerable by a reduction argument.

Problem siz.23. Let \(P \) be the set of functions from the set of positive integers to the set \(\{0\} \), and let \(Q \) be the set of partial functions from the set of positive integers to the set \(\{0\} \). Show that \(P \) is enumerable and \(Q \) is not. (Hint: reduce the problem of enumerating \(\mathbb{B}^\omega \) to enumerating \(Q \)).

Problem siz.24. Let \(S \) be the set of all surjective functions from the set of positive integers to the set \(\{0,1\} \), i.e., \(S \) consists of all surjective \(f : \mathbb{Z}^+ \to \mathbb{B} \). Show that \(S \) is non-enumerable.

Problem siz.25. Show that the set \(\mathbb{R} \) of all real numbers is non-enumerable.

siz.8 Equinumerosity

We have an intuitive notion of “size” of sets, which works fine for finite sets. But what about infinite sets? If we want to come up with a formal way of comparing the sizes of two sets of any size, it is a good idea to start by defining when sets are the same size. Here is Frege:

If a waiter wants to be sure that he has laid exactly as many knives as plates on the table, he does not need to count either of them, if he simply lays a knife to the right of each plate, so that every knife on the table lies to the right of some plate. The plates and knives are thus uniquely correlated to each other, and indeed through that same spatial relationship. (Frege, 1884, §70)
The insight of this passage can be brought out through a formal definition:

Definition 19. A is *equinumerous* with B, written $A \approx B$, iff there is a bijection $f : A \to B$.

Proposition 20. Equinumerosity is an equivalence relation.

Proof. We must show that equinumerosity is reflexive, symmetric, and transitive. Let $A, B,$ and C be sets.

Reflexivity. The identity map $\text{Id}_A : A \to A$, where $\text{Id}_A(x) = x$ for all $x \in A$, is a bijection. So $A \approx A$.

Symmetry. Suppose $A \approx B$, i.e., there is a bijection $f : A \to B$. Since f is bijective, its inverse f^{-1} exists and is also bijective. Hence, $f^{-1} : B \to A$ is a bijection, so $B \approx A$.

Transitivity. Suppose that $A \approx B$ and $B \approx C$, i.e., there are bijections $f : A \to B$ and $g : B \to C$. Then the composition $g \circ f : A \to C$ is bijective, so that $A \approx C$. \[
\square
\]

Proposition 21. If $A \approx B$, then A is *enumerable* if and only if B is.

The following proof uses Definition 4 if section 2 is included and Definition 27 otherwise.

Proof. Suppose $A \approx B$, so there is some bijection $f : A \to B$, and suppose that A is enumerable. Then either $A = \emptyset$ or there is a surjective function $g : \mathbb{Z}^+ \to A$. If $A = \emptyset$, then $B = \emptyset$ also (otherwise there would be an element $y \in B$ but no $x \in A$ with $g(x) = y$). If, on the other hand, $g : \mathbb{Z}^+ \to A$ is surjective, then $f \circ g : \mathbb{Z}^+ \to B$ is surjective. To see this, let $y \in B$. Since f is surjective, there is an $x \in A$ such that $f(x) = y$. Since g is surjective, there is an $n \in \mathbb{Z}^+$ such that $g(n) = x$. Hence,

$$
(f \circ g)(n) = f(g(n)) = f(x) = y
$$

and thus $f \circ g$ is surjective. We have that $f \circ g$ is an enumeration of B, and so B is enumerable.

If B is enumerable, we obtain that A is enumerable by repeating the argument with the bijection $f^{-1} : B \to A$ instead of f. \[\square\]

Problem 26. Show that if $A \approx C$ and $B \approx D$, and $A \cap B = C \cap D = \emptyset$, then $A \cup B \approx C \cup D$.

Problem 27. Show that if A is infinite and enumerable, then $A \approx \mathbb{N}$.

size-of-sets-complete rev: 016d2bc (2024-06-22) by OLP / CC–BY
siz.9 Sets of Different Sizes, and Cantor’s Theorem

We have offered a precise statement of the idea that two sets have the same size. We can also offer a precise statement of the idea that one set is smaller than another. Our definition of “is smaller than (or equinumerous)” will require, instead of a bijection between the sets, an injection from the first set to the second. If such a function exists, the size of the first set is less than or equal to the size of the second. Intuitively, an injection from one set to another guarantees that the range of the function has at least as many elements as the domain, since no two elements of the domain map to the same element of the range.

Definition siz.22. A is no larger than B, written \(A \preceq B \), iff there is an injection \(f : A \rightarrow B \).

It is clear that this is a reflexive and transitive relation, but that it is not symmetric (this is left as an exercise). We can also introduce a notion, which states that one set is (strictly) smaller than another.

Definition siz.23. A is smaller than B, written \(A \prec B \), iff there is an injection \(f : A \rightarrow B \) but no bijection \(g : A \rightarrow B \), i.e., \(A \preceq B \) and \(A \not\approx B \).

It is clear that this relation is irreflexive and transitive. (This is left as an exercise.) Using this notation, we can say that a set \(A \) is enumerable iff \(A \preceq \mathbb{N} \), and that \(A \) is non-enumerable iff \(\mathbb{N} \prec A \). This allows us to restate Theorem siz.32 as the observation that \(\mathbb{N} \prec \wp(\mathbb{N}) \). In fact, Cantor (1892) proved that this last point is perfectly general:

Theorem siz.24 (Cantor). \(A \prec \wp(A) \), for any set \(A \).

Proof. The map \(f(x) = \{x\} \) is an injection \(f : A \rightarrow \wp(A) \), since if \(x \neq y \), then also \(\{x\} \neq \{y\} \) by extensionality, and so \(f(x) \neq f(y) \). So we have that \(A \preceq \wp(A) \).

We present the slow proof if section siz.6 is present, otherwise a faster proof matching section siz.12.

We will now show that there cannot be a surjective function \(g : A \rightarrow \wp(A) \), let alone a bijective one, and hence that \(A \not\approx \wp(A) \). For suppose that \(g : A \rightarrow \wp(A) \). Since \(g \) is total, every \(x \in A \) is mapped to a subset \(g(x) \subseteq A \). We can show that \(g \) cannot be surjective. To do this, we define a subset \(\overline{A} \subseteq A \) which by definition cannot be in the range of \(g \). Let

\[
\overline{A} = \{x \in A : x \notin g(x)\}.
\]

Since \(g(x) \) is defined for all \(x \in A \), \(\overline{A} \) is clearly a well-defined subset of \(A \). But, it cannot be in the range of \(g \). Let \(x \in A \) be arbitrary, we will show...
that \(\overline{A} \neq g(x) \). If \(x \in g(x) \), then it does not satisfy \(x \notin g(x) \), and so by the definition of \(\overline{A} \), we have \(x \notin \overline{A} \). If \(x \in \overline{A} \), it must satisfy the defining property of \(\overline{A} \), i.e., \(x \in A \) and \(x \notin g(x) \). Since \(x \) was arbitrary, this shows that for each \(x \in \overline{A} \), \(x \notin g(x) \) iff \(x \notin \overline{A} \), and so by the definition of \(A \), we have \(x \notin A \). If \(x \in A \), it must satisfy the defining property of \(A \), i.e., \(x \in A \) and \(x \notin g(x) \). Since \(x \) was arbitrary, this shows that for each \(x \in A \), \(x \notin g(x) \) iff \(x \notin A \), and so \(g(x) \neq \overline{A} \). In other words, \(A \) cannot be in the range of \(g \), contradicting the assumption that \(g \) is surjective.

It’s instructive to compare the proof of Theorem siz.24 to that of Theorem siz.18. There we showed that for any list \(Z_1, Z_2, \ldots \) of subsets of \(\mathbb{Z}^+ \) one can construct a set \(Z \) of numbers guaranteed not to be on the list. It was guaranteed not to be on the list because, for every \(n \in \mathbb{Z}^+ \), \(n \notin Z \) iff \(n \notin \overline{Z} \). This way, there is always some number that is an element of one of \(Z_n \) or \(\overline{Z} \) but not the other. We follow the same idea here, except the indices \(n \) are now elements of \(A \) instead of \(\mathbb{Z}^+ \). The set \(B \) is defined so that it is different from \(g(x) \) for each \(x \in A \), because \(x \in g(x) \) iff \(x \notin B \). Again, there is always an element of \(A \) which is an element of one of \(g(x) \) and \(B \) but not the other. And just as \(Z \) therefore cannot be on the list \(Z_1, Z_2, \ldots \), \(B \) cannot be in the range of \(g \).

It’s instructive to compare the proof of Theorem siz.24 to that of Theorem siz.32. There we showed that for any list \(N_0, N_1, N_2, \ldots \) of subsets of \(\mathbb{N} \) we can construct a set \(D \) of numbers guaranteed not to be on the list. It was guaranteed not to be on the list because \(n \in N_n \) iff \(n \notin D \), for every \(n \in \mathbb{N} \). We follow the same idea here, except the indices \(n \) are now elements of \(A \) rather than of \(\mathbb{N} \). The set \(D \) is defined so that it is different from \(g(x) \) for each \(x \in A \), because \(x \in g(x) \) iff \(x \notin D \).

The proof is also worth comparing with the proof of Russell’s Paradox, ???. Indeed, Cantor’s Theorem was the inspiration for Russell’s own paradox.

Problem siz.28. Show that there cannot be an injection \(g: \wp(A) \to A \), for any set \(A \). Hint: Suppose \(g: \wp(A) \to A \) is injective. Consider \(D = \{ g(B) : B \subseteq A \text{ and } g(B) \notin B \} \). Let \(x = g(D) \). Use the fact that \(g \) is injective to derive a contradiction.

The Notion of Size, and Schröder-Bernstein

Here is an intuitive thought: if \(A \) is no larger than \(B \) and \(B \) is no larger than \(A \), then \(A \) and \(B \) are equinumerous. To be honest, if this thought were wrong, then we could scarcely justify the thought that our defined notion of equinumerosity has anything to do with comparisons of “sizes” between sets! Fortunately, though, the intuitive thought is correct. This is justified by the Schröder-Bernstein Theorem.

Theorem siz.25 (Schröder-Bernstein). If \(A \leq B \) and \(B \leq A \), then \(A \approx B \).

In other words, if there is an injection from \(A \) to \(B \), and an injection from \(B \) to \(A \), then there is a bijection from \(A \) to \(B \).
This result, however, is really rather difficult to prove. Indeed, although Cantor stated the result, others proved it.¹ For now, you can (and must) take it on trust.

Fortunately, Schröder-Bernstein is correct, and it vindicates our thinking of the relations we defined, i.e., $A \approx B$ and $A \preceq B$, as having something to do with “size”. Moreover, Schröder-Bernstein is very useful. It can be difficult to think of a bijection between two equinumerous sets. The Schröder-Bernstein Theorem allows us to break the comparison down into cases so we only have to think of an injection from the first to the second, and vice-versa.

The following section siz.11, section siz.12, section siz.13 are alternative versions of section siz.2, section siz.6, section siz.7 due to Tim Button for use in his Open Set Theory text. They are slightly more advanced and use a difference definition of enumerability more suitable in a set theory context (i.e., bijection with \mathbb{N} or an initial segment, rather than being listable or being the range of a surjective function from \mathbb{Z}^+).

siz.11 Enumerations and Enumerable Sets

We can specify finite set is by simply enumerating its elements. We do this when we define a set like so:

$$A = \{a_1, a_2, \ldots, a_n\}.$$

Assuming that the elements a_1, \ldots, a_n are all distinct, this gives us a bijection between A and the first n natural numbers $0, \ldots, n-1$. Conversely, since every finite set has only finitely many elements, every finite set can be put into such a correspondence. In other words, if A is finite, there is a bijection between A and $\{0, \ldots, n-1\}$, where n is the number of elements of A.

If we allow for certain kinds of infinite sets, then we will also allow some infinite sets to be enumerated. We can make this precise by saying that an infinite set is enumerated by a bijection between it and all of \mathbb{N}.

Definition siz.26 (Enumeration, set-theoretic). An enumeration of a set A is a bijection whose range is A and whose domain is either an initial set of natural numbers $\{0,1,\ldots,n\}$ or the entire set of natural numbers \mathbb{N}.

¹For more on the history, see e.g., Potter (2004, pp. 165–6).
There is an intuitive underpinning to this use of the word *enumeration*. For to say that we have enumerated a set \(A \) is to say that there is a bijection \(f \) which allows us to count out the elements of the set \(A \). The 0th element is \(f(0) \), the 1st is \(f(1) \), \ldots the \(n \)th is \(f(n) \).\(^2\) The rationale for this may be made even clearer by adding the following:

Definition siz.27. A set \(A \) is *enumerable* iff either \(A = \emptyset \) or there is an enumeration of \(A \). We say that \(A \) is *non-enumerable* iff \(A \) is not enumerable.

So a set is *enumerable* iff it is empty or you can use an enumeration to count out its elements.

Example siz.28. A function enumerating the natural numbers is simply the identity function \(\text{Id}_\mathbb{N} : \mathbb{N} \to \mathbb{N} \) given by \(\text{Id}_\mathbb{N}(n) = n \). A function enumerating the *positive* natural numbers, \(\mathbb{N}^+ = \mathbb{N} \setminus \{0\} \), is the function \(g(n) = n + 1 \), i.e., the successor function.

Problem siz.29. Show that a set \(A \) is *enumerable* iff either \(A = \emptyset \) or there is a surjection \(f : \mathbb{N} \to A \). Show that \(A \) is *enumerable* iff there is an injection \(g : A \to \mathbb{N} \).

Example siz.29. The functions \(f : \mathbb{N} \to \mathbb{N} \) and \(g : \mathbb{N} \to \mathbb{N} \) given by

\[
\begin{align*}
 f(n) &= 2n \\
 g(n) &= 2n + 1
\end{align*}
\]

respectively enumerate the even natural numbers and the odd natural numbers. But neither is surjective, so neither is an enumeration of \(\mathbb{N} \).

Problem siz.30. Define an enumeration of the square numbers 1, 4, 9, 16, \ldots

Example siz.30. Let \(\lceil x \rceil \) be the *ceiling* function, which rounds \(x \) up to the nearest integer. Then the function \(f : \mathbb{N} \to \mathbb{Z} \) given by:

\[
f(n) = (-1)^n \left\lceil \frac{n}{2} \right\rceil
\]

enumerates the set of integers \(\mathbb{Z} \) as follows:

\[
\begin{array}{cccccccc}
 f(0) & f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & \ldots \\
 \left\lceil \frac{0}{2} \right\rceil & -\left\lceil \frac{1}{2} \right\rceil & \left\lceil \frac{2}{2} \right\rceil & -\left\lceil \frac{3}{2} \right\rceil & \left\lceil \frac{4}{2} \right\rceil & -\left\lceil \frac{5}{2} \right\rceil & \left\lceil \frac{6}{2} \right\rceil & \ldots \\
 0 & -1 & 1 & -2 & 2 & -3 & 3 & \ldots
\end{array}
\]

\(^2\)Yes, we count from 0. Of course we could also start with 1. This would make no big difference. We would just have to replace \(\mathbb{N} \) by \(\mathbb{Z}^+ \).

size-of-sets-complete rev: 016d2bc (2024-06-22) by OLP / CC–BY
Notice how \(f \) generates the values of \(Z \) by “hopping” back and forth between positive and negative integers. You can also think of \(f \) as defined by cases as follows:

\[
f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}
\]

Problem siz.31. Show that if \(A \) and \(B \) are enumerable, so is \(A \cup B \).

Problem siz.32. Show by induction on \(n \) that if \(A_1, A_2, \ldots, A_n \) are all enumerable, so is \(A_1 \cup \cdots \cup A_n \).

siz.12 Non-enumerable Sets

This section proves the non-enumerability of \(\mathbb{B}^\omega \) and \(\mathcal{P}(\mathbb{N}) \) using the definitions in section siz.11, i.e., requiring a bijection with \(\mathbb{N} \) instead of a surjection from \(\mathbb{Z}^+ \).

The set \(\mathbb{N} \) of natural numbers is infinite. It is also trivially enumerable. But the remarkable fact is that there are non-enumerable sets, i.e., sets which are not enumerable (see Definition siz.27).

This might be surprising. After all, to say that \(A \) is non-enumerable is to say that there is no bijection \(f : \mathbb{N} \to A \); that is, no function mapping the infinitely many elements of \(\mathbb{N} \) to \(A \) exhausts all of \(A \). So if \(A \) is non-enumerable, there are “more” elements of \(A \) than there are natural numbers.

To prove that a set is non-enumerable, you have to show that no appropriate bijection can exist. The best way to do this is to show that every attempt to enumerate elements of \(A \) must leave at least one element out; this shows that no function \(f : \mathbb{N} \to A \) is surjective. And a general strategy for establishing this is to use Cantor’s diagonal method. Given a list of elements of \(A \), say, \(x_1, x_2, \ldots \), we construct another element of \(A \) which, by its construction, cannot possibly be on that list.

But all of this is best understood by example. So, our first example is the set \(\mathbb{B}^\omega \) of all infinite strings of 0’s and 1’s. (The ‘\(\mathbb{B} \)’ stands for binary, and we can just think of it as the two-element set \(\{0, 1\} \).)

Theorem siz.31. \(\mathbb{B}^\omega \) is non-enumerable.

Proof. Consider any enumeration of a subset of \(\mathbb{B}^\omega \). So we have some list \(s_0, s_1, s_2, \ldots \) where every \(s_n \) is an infinite string of 0’s and 1’s. Let \(s_n(m) \) be the \(n \)th digit of the \(m \)th string in this list. So we can now think of our list as an
array, where $s_n(m)$ is placed at the nth row and mth column:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$s_0(0)$</td>
<td>$s_0(1)$</td>
<td>$s_0(2)$</td>
<td>$s_0(3)$</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>$s_1(0)$</td>
<td>$s_1(1)$</td>
<td>$s_1(2)$</td>
<td>$s_1(3)$</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>$s_2(0)$</td>
<td>$s_2(1)$</td>
<td>$s_2(2)$</td>
<td>$s_2(3)$</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>$s_3(0)$</td>
<td>$s_3(1)$</td>
<td>$s_3(2)$</td>
<td>$s_3(3)$</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

We will now construct an infinite string, d, of 0’s and 1’s which is not on this list. We will do this by specifying each of its entries, i.e., we specify $d(n)$ for all $n \in \mathbb{N}$. Intuitively, we do this by reading down the diagonal of the array above (hence the name “diagonal method”) and then changing every 1 to a 0 and every 1 to a 0. More abstractly, we define $d(n)$ to be 0 or 1 according to whether the n-th element of the diagonal, $s_n(n)$, is 1 or 0, that is:

$$d(n) = \begin{cases}
1 & \text{if } s_n(n) = 0 \\
0 & \text{if } s_n(n) = 1
\end{cases}$$

Clearly $d \in \mathbb{B}^\omega$, since it is an infinite string of 0’s and 1’s. But we have constructed d so that $d(n) \neq s_n(n)$ for any $n \in \mathbb{N}$. That is, d differs from s_n in its nth entry. So $d \neq s_n$ for any $n \in \mathbb{N}$. So d cannot be on the list s_0, s_1, s_2, ...

We have shown, given an arbitrary enumeration of some subset of \mathbb{B}^ω, that it will omit some element of \mathbb{B}^ω. So there is no enumeration of the set \mathbb{B}^ω, i.e., \mathbb{B}^ω is non-enumerable.

This proof method is called “diagonalization” because it uses the diagonal of the array to define d. However, diagonalization need not involve the presence of an array. Indeed, we can show that some set is non-enumerable by using a similar idea, even when no array and no actual diagonal is involved. The following result illustrates how.

Theorem siz.32. $\wp(\mathbb{N})$ is not enumerable.

Proof. We proceed in the same way, by showing that every list of subsets of \mathbb{N} omits some subset of \mathbb{N}. So, suppose that we have some list N_0, N_1, N_2, \ldots of subsets of \mathbb{N}. We define a set D as follows: $n \in D$ iff $n \notin N_n$:

$$D = \{ n \in \mathbb{N} : n \notin N_n \}$$

Clearly $D \subseteq \mathbb{N}$. But D cannot be on the list. After all, by construction $n \in D$ iff $n \notin N_n$, so that $D \neq N_n$ for any $n \in \mathbb{N}$.

The preceding proof did not mention a diagonal. Still, you can think of it as involving a diagonal if you picture it this way: Imagine the sets N_0, N_1, N_2, ..., written in an array, where we write N_n on the nth row by writing m in...
the mth column iff $m \in \mathbb{N}$. For example, say the first four sets on that list are \{0,1,2,\ldots\}, \{1,3,5,\ldots\}, \{0,1,4\}, and \{2,3,4,\ldots\}; then our array would begin with
\begin{align*}
N_0 &= \{0, 1, 2, \ldots\} \\
N_1 &= \{1, 3, 5, \ldots\} \\
N_2 &= \{0, 1, 4\} \\
N_3 &= \{2, 3, 4, \ldots\} \\
&\vdots
\end{align*}

Then D is the set obtained by going down the diagonal, placing $n \in D$ iff n is not on the diagonal. So in the above case, we would leave out 0 and 1, we would include 2, we would leave out 3, etc.

Problem siz.33. Show that the set of all functions $f: \mathbb{N} \to \mathbb{N}$ is non-enumerable by an explicit diagonal argument. That is, show that if f_1, f_2, \ldots, is a list of functions and each $f_i: \mathbb{N} \to \mathbb{N}$, then there is some $g: \mathbb{N} \to \mathbb{N}$ not on this list.

siz.13 Reduction

This section proves non-enumerability by reduction, matching the results in section siz.12. An alternative, slightly more elaborate version matching the results in section siz.6 is provided in section siz.7.

We proved that \mathbb{B}^ω is non-enumerable by a diagonalization argument. We used a similar diagonalization argument to show that $\wp(\mathbb{N})$ is non-enumerable. But here’s another way we can prove that $\wp(\mathbb{N})$ is non-enumerable: show that if $\wp(\mathbb{N})$ is enumerable then \mathbb{B}^ω is also enumerable. Since we know \mathbb{B}^ω is non-enumerable, it will follow that $\wp(\mathbb{N})$ is too.

This is called reducing one problem to another. In this case, we reduce the problem of enumerating \mathbb{B}^ω to the problem of enumerating $\wp(\mathbb{N})$. A solution to the latter—an enumeration of $\wp(\mathbb{N})$—would yield a solution to the former—an enumeration of \mathbb{B}^ω.

To reduce the problem of enumerating a set B to that of enumerating a set A, we provide a way of turning an enumeration of A into an enumeration of B. The easiest way to do that is to define a surjection $f: A \to B$. If x_1, x_2, \ldots enumerates A, then $f(x_1), f(x_2), \ldots$ would enumerate B. In our case, we are looking for a surjection $f: \wp(\mathbb{N}) \to \mathbb{B}^\omega$.

Problem siz.34. Show that if there is an injective function $g: B \to A$, and B is non-enumerable, then so is A. Do this by showing how you can use g to turn an enumeration of A into one of B.

Proof of Theorem siz.32 by reduction. For a reduction, suppose that $\wp(\mathbb{N})$ is enumerable, and thus that there is an enumeration of it, N_1, N_2, N_3, \ldots
Define the function $f : \wp(\mathbb{N}) \rightarrow \mathbb{B}^\omega$ by letting $f(N)$ be the string s_k such that $s_k(n) = 1$ iff $n \in N$, and $s_k(n) = 0$ otherwise.

This clearly defines a function, since whenever $N \subseteq \mathbb{N}$, any $n \in \mathbb{N}$ either is an element of N or isn’t. For instance, the set $2\mathbb{N} = \{2n : n \in \mathbb{N}\} = \{0, 2, 4, 6, \ldots\}$ of even naturals gets mapped to the string 1010101\ldots; \emptyset gets mapped to 0000\ldots; \mathbb{N} gets mapped to 1111\ldots.

It is also surjective: every string of 0s and 1s corresponds to some set of natural numbers, namely the one which has as its members those natural numbers corresponding to the places where the string contains a 1s. More precisely, if $s \in \mathbb{B}^\omega$, then define $N \subseteq \mathbb{N}$ by:

$$N = \{n \in \mathbb{N} : s(n) = 1\}$$

Then $f(N) = s$, as can be verified by consulting the definition of f.

Now consider the list $f(N_1), f(N_2), f(N_3), \ldots$

Since f is surjective, every member of \mathbb{B}^ω must appear as a value of f for some argument, and so must appear on the list. This list must therefore enumerate all of \mathbb{B}^ω.

So if $\wp(\mathbb{N})$ were enumerable, \mathbb{B}^ω would be enumerable. But \mathbb{B}^ω is non-enumerable (Theorem siz.31). Hence $\wp(\mathbb{N})$ is non-enumerable.

Problem siz.35. Show that the set X of all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ is non-enumerable by a reduction argument (Hint: give a surjective function from X to \mathbb{B}^ω.)

Problem siz.36. Show that the set of all sets of pairs of natural numbers, i.e., $\wp(\mathbb{N} \times \mathbb{N})$, is non-enumerable by a reduction argument.

Problem siz.37. Show that \mathbb{N}^ω, the set of infinite sequences of natural numbers, is non-enumerable by a reduction argument.

Problem siz.38. Let S be the set of all surjections from \mathbb{N} to the set $\{0, 1\}$, i.e., S consists of all surjections $f : \mathbb{N} \rightarrow \mathbb{B}$. Show that S is non-enumerable.

Problem siz.39. Show that the set \mathbb{R} of all real numbers is non-enumerable.

Photo Credits
Bibliography

