
Figure 1: The union A ∪ B of two sets is set of elements of A together with
those of B.
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set.1 Unions and Intersections
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explanationIn ??, we introduced definitions of sets by abstraction, i.e., definitions of the
form {x : φ(x)}. Here, we invoke some property φ, and this property can
mention sets we’ve already defined. So for instance, if A and B are sets, the
set {x : x ∈ A ∨ x ∈ B} consists of all those objects which are elements of
either A or B, i.e., it’s the set that combines the elements of A and B. We can
visualize this as in Figure 1, where the highlighted area indicates the elements
of the two sets A and B together.

This operation on sets—combining them—is very useful and common, and
so we give it a formal name and a symbol.

Definition set.1 (Union). The union of two sets A and B, written A ∪ B,
is the set of all things which are elements of A, B, or both.

A ∪B = {x : x ∈ A ∨ x ∈ B}

Example set.2. Since the multiplicity of elements doesn’t matter, the union
of two sets which have an element in common contains that element only once,
e.g., {a, b, c} ∪ {a, 0, 1} = {a, b, c, 0, 1}.

The union of a set and one of its subsets is just the bigger set: {a, b, c} ∪
{a} = {a, b, c}.

The union of a set with the empty set is identical to the set: {a, b, c} ∪ ∅ =
{a, b, c}.

Problem set.1. Prove that if A ⊆ B, then A ∪B = B.

explanationWe can also consider a “dual” operation to union. This is the operation
that forms the set of all elements that are elements of A and are also elements
of B. This operation is called intersection, and can be depicted as in Figure 2.
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Figure 2: The intersection A ∩ B of two sets is the set of elements they have
in common.
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Definition set.3 (Intersection). The intersection of two sets A and B, writ-
ten A ∩B, is the set of all things which are elements of both A and B.

A ∩B = {x : x ∈ A ∧ x ∈ B}

Two sets are called disjoint if their intersection is empty. This means they
have no elements in common.

Example set.4. If two sets have no elements in common, their intersection is
empty: {a, b, c} ∩ {0, 1} = ∅.

If two sets do have elements in common, their intersection is the set of all
those: {a, b, c} ∩ {a, b, d} = {a, b}.

The intersection of a set with one of its subsets is just the smaller set:
{a, b, c} ∩ {a, b} = {a, b}.

The intersection of any set with the empty set is empty: {a, b, c} ∩ ∅ = ∅.

Problem set.2. Prove rigorously that if A ⊆ B, then A ∩B = A.

explanation We can also form the union or intersection of more than two sets. An
elegant way of dealing with this in general is the following: suppose you collect
all the sets you want to form the union (or intersection) of into a single set.
Then we can define the union of all our original sets as the set of all objects
which belong to at least one element of the set, and the intersection as the set
of all objects which belong to every element of the set.

Definition set.5. If A is a set of sets, then
⋃

A is the set of elements of
elements of A: ⋃

A = {x : x belongs to an element of A}, i.e.,

= {x : there is a B ∈ A so that x ∈ B}
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Figure 3: The difference A \ B of two sets is the set of those elements of A
which are not also elements of B.
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Definition set.6. If A is a set of sets, then
⋂

A is the set of objects which all
elements of A have in common:⋂

A = {x : x belongs to every element of A}, i.e.,

= {x : for all B ∈ A, x ∈ B}

Example set.7. SupposeA = {{a, b}, {a, d, e}, {a, d}}. Then
⋃

A = {a, b, d, e}
and

⋂
A = {a}.

Problem set.3. Show that if A is a set and A ∈ B, then A ⊆
⋃
B.

We could also do the same for a sequence of sets A1, A2, . . .⋃
i

Ai = {x : x belongs to one of the Ai}⋂
i

Ai = {x : x belongs to every Ai}.

When we have an index of sets, i.e., some set I such that we are considering
Ai for each i ∈ I, we may also use these abbreviations:⋃

i∈I

Ai =
⋃

{Ai : i ∈ I}⋂
i∈I

Ai =
⋂

{Ai : i ∈ I}

Finally, we may want to think about the set of all elements in A which are
not in B. We can depict this as in Figure 3.

Definition set.8 (Difference). The set difference A \B is the set of all ele-
ments of A which are not also elements of B, i.e.,

A \B = {x : x ∈ A and x /∈ B}.
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Problem set.4. Prove that if A ⊊ B, then B \A ̸= ∅.
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