rel.1 Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transitive. Relations R that have all three of these properties are very common.

Definition rel.1 (Equivalence relation). A relation $R \subseteq A^2$ that is reflexive, symmetric, and transitive is called an *equivalence relation*. Elements x and y of A are said to be R-equivalent if R_{xy}.

Equivalence relations give rise to the notion of an *equivalence class*. An equivalence relation “chunks up” the domain into different partitions. Within each partition, all the objects are related to one another; and no objects from different partitions relate to one another. Sometimes, it’s helpful just to talk about these partitions directly. To that end, we introduce a definition:

Definition rel.2. Let $R \subseteq A^2$ be an equivalence relation. For each $x \in A$, the *equivalence class* of x in A is the set $[x]_R = \{y \in A : R_{xy}\}$. The quotient of A under R is $A/R = \{[x]_R : x \in A\}$, i.e., the set of these equivalence classes.

The next result vindicates the definition of an equivalence class, in proving that the equivalence classes are indeed the partitions of A:

Proposition rel.3. If $R \subseteq A^2$ is an equivalence relation, then R_{xy} iff $[x]_R = [y]_R$.

Proof. For the left-to-right direction, suppose R_{xy}, and let $z \in [x]_R$. By definition, then, R_{xz}. Since R is an equivalence relation, R_{yz}. (Spelling this out: as R_{xy} and R is symmetric we have R_{yx}, and as R_{xz} and R is transitive we have R_{yz}.) So $z \in [y]_R$. Generalising, $[x]_R \subseteq [y]_R$. But exactly similarly, $[y]_R \subseteq [x]_R$. So $[x]_R = [y]_R$, by extensionality.

For the right-to-left direction, suppose $[x]_R = [y]_R$. Since R is reflexive, R_{yy}, so $y \in [y]_R$. Thus also $y \in [x]_R$ by the assumption that $[x]_R = [y]_R$. So R_{xy}. □

Example rel.4. A nice example of equivalence relations comes from modular arithmetic. For any a, b, and $n \in \mathbb{Z}^+$, say that $a \equiv_n b$ iff dividing a by n gives the same remainder as dividing b by n. (Somewhat more symbolically: $a \equiv_n b$ iff, for some $k \in \mathbb{Z}$, $a - b = kn$.) Now, \equiv_n is an equivalence relation, for any n. And there are exactly n distinct equivalence classes generated by \equiv_n; that is, \mathbb{N}/\equiv_n has n elements. These are: the set of numbers divisible by n without remainder, i.e., $[0]_\equiv_n$; the set of numbers divisible by n with remainder 1, i.e., $[1]_\equiv_n$; . . . ; and the set of numbers divisible by n with remainder $n - 1$, i.e., $[n - 1]_\equiv_n$.

Problem rel.1. Show that \equiv_n is an equivalence relation, for any $n \in \mathbb{Z}^+$, and that \mathbb{N}/\equiv_n has exactly n members.
Photo Credits

Bibliography