
replacement.1 Appendix: Results surrounding
Replacement

sth:replacement:refproofs:
sec

In this section, we will prove Reflection within ZF. We will also prove a sense in
which Reflection is equivalent to Replacement. And we will prove an interesting
consequence of all this, concerning the strength of Reflection/Replacement.
Warning: this is easily the most advanced bit of mathematics in this textbook.

We’ll start with a lemma which, for brevity, employs the notational device of
overlining to deal with sequences of variables or objects. So: “ak” abbreviates
“ak1

, . . . , akn
”, where n is determined by context.

Lemma replacement.1.sth:replacement:refproofs:

lemreflection

For each 1 ≤ i ≤ k, let φi(vi, x) be a formula.
Then for each α there is some β > α such that, for any a1, . . . , ak ∈ Vβ and
each 1 ≤ i ≤ k:

∃xφi(ai, x) → (∃x ∈ Vβ)φi(ai, x)

Proof. We define a term µ as follows: µ(a1, . . . , ak) is the least stage, V , which
satisfies all of the following conditionals, for 1 ≤ i ≤ k:

∃xφi(ai, x) → (∃x ∈ V )φi(ai, x))

It is easy to confirm that µ(a1, . . . , ak) exists for all a1, . . . , ak. Now, using
Replacement and our recursion theorem, define:

S0 = Vα+1

Sn+1 = Sn ∪
⋃

{µ(a1, . . . , ak) : a1, . . . , ak ∈ Sn}

S =
⋃

m<ω

Sn.

Each Sn, and hence S itself, is a stage after Vα. Now fix a1, . . . , ak ∈ S; so
there is some n < ω such that a1, . . . , ak ∈ Sn. Fix some 1 ≤ i ≤ k, and
suppose that ∃xφi(ai, x). So (∃x ∈ µ(a1, . . . , ak))φi(ai, x) by construction, so
(∃x ∈ Sn+1)φi(ai, x) and hence (∃x ∈ S)φi(ai, x). So S is our Vβ .

We can now prove ?? quite straightforwardly:

Proof. Fix α. Without loss of generality, we can assume φ’s only connectives
are ∃, ¬ and ∧ (since these are expressively adequate). Let ψ1, . . . , ψk enu-
merate each of φ’s subformulas according to complexity, so that ψk = φ. By
Lemma replacement.1, there is a β > α such that, for any ai ∈ Vβ and each
1 ≤ i ≤ k:

∃xψi(ai, x) → (∃x ∈ Vβ)ψi(ai, x) (*)

By induction on complexity of ψi, we will show that ψi(ai) ↔ ψ
Vβ

i (ai), for
any ai ∈ Vβ . If ψi is atomic, this is trivial. The biconditional also estab-
lishes that, when ψi is a negation or conjunction of subformulas satisfying this

refproofs rev: cd9363b (2021-11-30) by OLP / CC–BY 1

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


property, ψi itself satisfies this property. So the only interesting case concerns
quantification. Fix ai ∈ Vβ ; then:

(∃xψi(ai, x))
Vβ iff (∃x ∈ Vβ)ψ

Vβ

i (ai, x) by definition

iff (∃x ∈ Vβ)ψi(ai, x) by hypothesis

iff ∃xψi(ai, x) by (*)

This completes the induction; the result follows as ψk = φ.

We have proved Reflection in ZF. Our proof essentially followed Montague
(1961). We now want to prove in Z that Reflection entails Replacement. The
proof follows Lévy (1960), but with a simplification.

Since we are working in Z, we cannot present Reflection in exactly the form
given above. After all, we formulated Reflection using the “Vα” notation, and
that cannot be defined in Z (see ??). So instead we will offer an apparently
weaker formulation of Replacement, as follows:

Weak-Reflection. For any formula φ, there is a transitive set S such that
0, 1, and any parameters to φ are elements of S, and (∀x ∈ S)(φ↔ φS).

To use this to prove Replacement, we will first follow Lévy (1960, first part
of Theorem 2) and show that we can “reflect” two formulas at once:

Lemma replacement.2 (in Z+Weak-Reflection.). sth:replacement:refproofs:

lem:reflect

For any formulas ψ, χ,
there is a transitive set S such that 0 and 1 (and any parameters to the formu-
las) are elements of S, and (∀x ∈ S)((ψ↔ ψS) ∧ (χ↔ χS)).

Proof. Let φ be the formula (z = 0 ∧ ψ) ∨ (z = 1 ∧ χ).
Here we use an abbreviation; we should spell out “z = 0” as “∀t t /∈ z” and

“z = 1” as “∀s(s ∈ z↔∀t t /∈ s)”. But since 0, 1 ∈ S and S is transitive, these
formulas are absolute for S; that is, they will apply to the same object whether
we restrict their quantifiers to S.1

By Weak-Reflection, we have some appropriate S such that:

(∀z, x ∈ S)(φ↔ φS)

i.e. (∀z, x ∈ S)(((z = 0 ∧ ψ) ∨ (z = 1 ∧ χ))↔
((z = 0 ∧ ψ) ∨ (z = 1 ∧ χ))S)

i.e. (∀z, x ∈ S)(((z = 0 ∧ ψ) ∨ (z = 1 ∧ χ))↔
((z = 0 ∧ ψS) ∨ (z = 1 ∧ χS)))

i.e. (∀x ∈ S)((ψ↔ ψS) ∧ (χ↔ χS))

The second claim entails the third because “z = 0” and “z = 1” are absolute
for S; the fourth claim follows since 0 ̸= 1.

1More formally, letting ξ be either of these formulas, ξ(z)↔ ξS(z).
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We can now obtain Replacement, just by following and simplifying Lévy (1960,
Theorem 6):

Theorem replacement.3 (in Z + Weak-Reflection). For any formula φ(v, w),
and any A, if (∀x ∈ A)∃!y φ(x, y), then {y : (∃x ∈ A)φ(x, y} exists.

Proof. Fix A such that (∀x ∈ A)∃!y φ(x, y), and define formulas:

ψ is (φ(x, z) ∧A = A)

χ is ∃y φ(x, y)

Using Lemma replacement.2, since A is a parameter to ψ, there is a transitive S
such that 0, 1, A ∈ S (along with any other parameters), and such that:

(∀x, z ∈ S)((ψ↔ ψS) ∧ (χ↔ χS))

So in particular:

(∀x, z ∈ S)(φ(x, z)↔ φS(x, z))

(∀x ∈ S)(∃yφ(x, y)↔ (∃y ∈ S)φS(x, y))

Combining these, and observing that A ⊆ S since A ∈ S and S is transitive:

(∀x ∈ A)(∃yφ(x, y)↔ (∃y ∈ S)φ(x, y))

Now (∀x ∈ A)(∃!y ∈ S)φ(x, y), because (∀x ∈ A)∃!y φ(x, y). Now Separation
yields {y ∈ S : (∃x ∈ A)φ(x, y)} = {y : (∃x ∈ A)φ(x, y)}.
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