replacement.1 Appendix: Results surrounding Replacement

In this section, we will prove Reflection within ZF. We will also prove a sense in which Reflection is equivalent to Replacement. And we will prove an interesting consequence of all this, concerning the strength of Reflection/Replacement.

Warning: this is easily the most advanced bit of mathematics in this textbook.

We'll start with a lemma which, for brevity, employs the notational device of overlining to deal with sequences of variables or objects. So: “\(\overline{a_k, \ldots, a_n} \)” abbreviates “\(a_{k_1}, \ldots, a_{n_1} \)” , where \(n \) is determined by context.

Lemma replacement.1. For each \(1 \leq i \leq k \), let \(\varphi_i(\overline{a_i}, x) \) be a formula. Then for each \(\alpha \) there is some \(\beta > \alpha \) such that, for any \(\overline{a_1}, \ldots, \overline{a_k} \in V_\beta \) and each \(1 \leq i \leq k \):

\[
\exists x \varphi_i(\overline{a_i}, x) \rightarrow (\exists x \in V_\beta) \varphi_i(\overline{a_i}, x)
\]

Proof. We define a term \(\mu \) as follows: \(\mu(\overline{a_1}, \ldots, \overline{a_k}) \) is the least stage, \(V_\beta \), which satisfies all of the following conditionals, for \(1 \leq i \leq k \):

\[
\exists x \varphi_i(\overline{a_i}, x) \rightarrow (\exists x \in V_\beta) \varphi_i(\overline{a_i}, x)
\]

It is easy to confirm that \(\mu(\overline{a_1}, \ldots, \overline{a_k}) \) exists for all \(\overline{a_1}, \ldots, \overline{a_k} \). Now, using Replacement and our recursion theorem, define:

\[
S_0 = V_{\alpha+1}
\]

\[
S_{n+1} = S_n \cup \bigcup \{ \mu(\overline{a_1}, \ldots, \overline{a_k}) : \overline{a_1}, \ldots, \overline{a_k} \in S_n \}
\]

\[
S = \bigcup_{m<\omega} S_m.
\]

Each \(S_n \), and hence \(S \) itself, is a stage after \(V_\alpha \). Now fix \(\overline{a_1}, \ldots, \overline{a_k} \in S \); so there is some \(n < \omega \) such that \(\overline{a_1}, \ldots, \overline{a_k} \in S_n \). Fix some \(1 \leq i \leq k \), and suppose that \(\exists x \varphi_i(\overline{a_i}, x) \). So \((\exists x \in \mu(\overline{a_1}, \ldots, \overline{a_k})) \varphi_i(\overline{a_i}, x) \) by construction, so \((\exists x \in S_{n+1}) \varphi_i(\overline{a_i}, x) \) and hence \((\exists x \in S) \varphi_i(\overline{a_i}, x) \). So \(S \) is our \(V_\beta \). □

We can now prove ?? quite straightforwardly:

Proof. Fix \(\alpha \). Without loss of generality, we can assume \(\varphi \)'s only connectives are \(\exists, \neg \) and \(\wedge \) (since these are expressively adequate). Let \(\psi_1, \ldots, \psi_k \) enumerate each of \(\varphi \)'s subformulas according to complexity, so that \(\psi_k = \varphi \). By Lemma replacement.1, there is a \(\beta > \alpha \) such that, for any \(\overline{a_i} \in V_\beta \) and each \(1 \leq i \leq k \):

\[
\exists x \psi_i(\overline{a_i}, x) \rightarrow (\exists x \in V_\beta) \psi_i(\overline{a_i}, x)
\]

By induction on complexity of \(\psi_i \), we will show that \(\psi_i(\overline{a_i}) \leftrightarrow \psi_i^{V_\beta}(\overline{a_i}) \), for any \(\overline{a_i} \in V_\beta \). If \(\psi_i \) is atomic, this is trivial. The biconditional also establishes that, when \(\psi_i \) is a negation or conjunction of subformulas satisfying this
property, \(\psi_i\) itself satisfies this property. So the only interesting case concerns quantification. Fix \(\pi_i \in V_\beta\); then:

\[
(\exists x \psi_i(\pi_i, x))^{V_\beta} \iff (\exists x \in V_\beta)\psi_i(\pi_i, x)
\]

by definition

\[
(\exists x \in V_\beta)\psi_i(\pi_i, x)
\]

by hypothesis

\[
\exists x \psi_i(\pi_i, x)
\]

by (*)

This completes the induction; the result follows as \(\psi_k = \varphi\).

We have proved Reflection in \(ZF\). Our proof essentially followed Montague (1961). We now want to prove in \(Z\) that Reflection entails Replacement. The proof follows Lévy (1960), but with a simplification.

Since we are working in \(Z\), we cannot present Reflection in exactly the form given above. After all, we formulated Reflection using the “\(V_\alpha\)” notation, and that cannot be defined in \(Z\) (see ??). So instead we will offer an apparently weaker formulation of Replacement, as follows:

Weak-Reflection. For any formula \(\varphi\), there is a transitive set \(S\) such that 0, 1, and any parameters to \(\varphi\) are elements of \(S\), and \((\forall \pi \in S)(\varphi \leftrightarrow \varphi^S)\).

To use this to prove Replacement, we will first follow Lévy (1960, first part of Theorem 2) and show that we can “reflect” two formulas at once:

Lemma replacement.2 (in \(Z + Weak-Reflection\).) For any formulas \(\psi, \chi\), there is a transitive set \(S\) such that 0 and 1 (and any parameters to the formulas) are elements of \(S\), and \((\forall \pi \in S)((\psi \leftrightarrow \psi^S) \land (\chi \leftrightarrow \chi^S))\).

Proof. Let \(\varphi\) be the formula \((z = 0 \land \psi) \lor (z = 1 \land \chi)\).

Here we use an abbreviation; we should spell out “\(z = 0\)” as “\(\forall t t \notin z\)” and “\(z = 1\)” as “\(\forall s (s \in z \leftrightarrow \forall t t \notin s)\)”. But since 0, 1 \(\in S\) and \(S\) is transitive, these formulas are absolute for \(S\); that is, they will apply to the same object whether we restrict their quantifiers to \(S\).

By Weak-Reflection, we have some appropriate \(S\) such that:

\[
(\forall z, \pi \in S)(\varphi \leftrightarrow \varphi^S)
\]

i.e. \((\forall z, \pi \in S)(((z = 0 \land \psi) \lor (z = 1 \land \chi)) \leftrightarrow ((z = 0 \land \psi^S) \lor (z = 1 \land \chi^S)))\)

i.e. \((\forall z, \pi \in S)((z = 0 \land \psi^S) \lor (z = 1 \land \chi^S))\)

i.e. \((\forall \pi \in S)((\psi \leftrightarrow \psi^S) \land (\chi \leftrightarrow \chi^S))\)

The second claim entails the third because “\(z = 0\)” and “\(z = 1\)” are absolute for \(S\); the fourth claim follows since 0 \(\neq 1\).
We can now obtain Replacement, just by following and simplifying Lévy (1960, Theorem 6):

Theorem replacement.3 (in $\mathbb{Z} + \text{Weak-Reflection}$). For any formula $\varphi(v, w)$, and any A, if $(\forall x \in A)\exists ! y \varphi(x, y)$, then $\{y : (\exists x \in A)\varphi(x, y)\}$ exists.

Proof. Fix A such that $(\forall x \in A)\exists ! y \varphi(x, y)$, and define formulas:

- ψ is $(\varphi(x, z) \land A = A)$
- χ is $\exists y \varphi(x, y)$

Using Lemma replacement.2, since A is a parameter to ψ, there is a transitive S such that $0, 1, A \in S$ (along with any other parameters), and such that:

$$(\forall x, z \in S)((\psi \leftrightarrow \psi^S) \land (\chi \leftrightarrow \chi^S))$$

So in particular:

$$(\forall x, z \in S)(\varphi(x, z) \leftrightarrow \varphi^S(x, z))$$

$$(\forall x \in S)(\exists y \varphi(x, y) \leftrightarrow (\exists y \in S)\varphi^S(x, y))$$

Combining these, and observing that $A \subseteq S$ since $A \in S$ and S is transitive:

$$(\forall x \in A)(\exists y \varphi(x, y) \leftrightarrow (\exists y \in S)\varphi(x, y))$$

Now $(\forall x \in A)(\exists y \varphi(x, y))$, because $(\forall x \in A)\exists y \varphi(x, y)$. Now Separation yields $\{y \in S : (\exists x \in A)\varphi(x, y)\} = \{y : (\exists x \in A)\varphi(x, y)\}$. \qed

Photo Credits

Bibliography
