ordinals.1 Well-Orderings

sth:ordinals:wo: The fundamental notion is as follows:

Definition ordinals.1. The relation < *well-orders A* iff it meets these two conditions:

- 1. < is connected, i.e., for all $a, b \in A$, either a < b or a = b or b < a;
- 2. every non-empty subset of A has a <-minimal element, i.e., if $\emptyset \neq X \subseteq A$ then $(\exists m \in X)(\forall z \in X)z \notin m$

It is easy to see that three examples we just considered were indeed wellordering relations.

Problem ordinals.1. ?? presented three example orderings on the natural numbers. Check that each is a well-ordering.

Here are some elementary but extremely important observations concerning well-ordering.

sth:ordinals:wo: Proposition ordinals.2. If < well-orders A, then every non-empty subset of wo:strictorder A has a unique <-least member, and < is irreflexive, asymmetric and transitive.

Proof. If X is a non-empty subset of A, it has a <-minimal element m, i.e., $(\forall z \in X) z \notin m$. Since < is connected, $(\forall z \in X) m \leq z$. So m is the <-least element of X.

For irreflexivity, fix $a \in A$; the <-least element of $\{a\}$ is a, so $a \not\leq a$. For transitivity, if a < b < c, then since $\{a, b, c\}$ has a <-least element, a < c. Asymmetry follows from irreflexivity and transitivity

sth:ordinals:wo: **Proposition ordinals.3.** If < well-orders A, then for any formula $\varphi(x)$:

if $(\forall a \in A)((\forall b < a)\varphi(b) \rightarrow \varphi(a))$, then $(\forall a \in A)\varphi(a)$.

Proof. We will prove the contrapositive. Suppose $\neg(\forall a \in A)\varphi(a)$, i.e., that $X = \{x \in A : \neg\varphi(x)\} \neq \emptyset$. Then X has an <-minimal element, a. So $(\forall b < a)\varphi(b)$ but $\neg\varphi(a)$.

This last property should remind you of the principle of strong induction on the naturals, i.e.: if $(\forall n \in \omega)((\forall m < n)\varphi(m) \rightarrow \varphi(n))$, then $(\forall n \in \omega)\varphi(n)$. And this property makes well-ordering into a very robust notion.¹

Photo Credits

Bibliography

¹A reminder: all formulas can have parameters (unless explicitly stated otherwise).