Order-Isomorphisms

To explain how robust well-ordering is, we will start by introducing a method for comparing well-orderings.

Definition ordinals.1. A well-ordering is a pair \(\langle A, < \rangle \), such that \(<\) well-orders \(A \). The well-orderings \(\langle A, < \rangle \) and \(\langle B, \preceq \rangle \) are order-isomorphic iff there is a bijection \(f: A \to B \) such that: \(x < y \) iff \(f(x) \preceq f(y) \). In this case, we write \(\langle A, < \rangle \cong \langle B, \preceq \rangle \), and say that \(f \) is an order-isomorphism.

In what follows, for brevity, we will speak of “isomorphisms” rather than “order-isomorphisms”. Intuitively, isomorphisms are structure-preserving bijections. Here are some simple facts about isomorphisms.

Lemma ordinals.2. Compositions of isomorphisms are isomorphisms, i.e.: if \(f: A \to B \) and \(g: B \to C \) are isomorphisms, then \((g \circ f): A \to C \) is an isomorphism.

Problem ordinals.1. Prove Lemma ordinals.2.

Proof. Left as an exercise.

Corollary ordinals.3. \(X \cong Y \) is an equivalence relation.

Proposition ordinals.4. If \(\langle A, < \rangle \) and \(\langle B, \preceq \rangle \) are isomorphic well-orderings, then the isomorphism between them is unique.

Proof. Let \(f \) and \(g \) be isomorphisms \(A \to B \). We will prove the result by induction, i.e. using ???. Fix \(a \in A \), and suppose (for induction) that \((\forall b < a) f(b) = g(b) \). Fix \(x \in B \).

If \(x < f(a) \), then \(f^{-1}(x) < a \), so \(g(f^{-1}(x)) < g(a) \), invoking the fact that \(f \) and \(g \) are isomorphisms. But since \(f^{-1}(x) < a \), by our supposition \(x = f(f^{-1}(x)) = g(f^{-1}(x)) \). So \(x < g(a) \). Similarly, if \(x \not< g(a) \) then \(x < f(a) \).

Generalising, \((\forall x \in B)(x < f(a) \leftrightarrow x < g(a)) \). It follows that \(f(a) = g(a) \) by ???. So \((\forall a \in A) f(a) = g(a) \) by ??.

This gives some sense that well-orderings are robust. But to continue explaining this, it will help to introduce some more notation.

Definition ordinals.5. When \(\langle A, < \rangle \) is a well-ordering with \(a \in A \), let \(A_a = \{ x \in A : x < a \} \). We say that \(A_a \) is a proper initial segment of \(A \) (and allow that \(A \) itself is an improper initial segment of \(A \)). Let \(<_a \) be the restriction of \(< \) to the initial segment, i.e., \(< \vert_{A_a} \).

Using this notation, we can state and prove that no well-ordering is isomorphic to any of its proper initial segments.

Lemma ordinals.6. If \(\langle A, < \rangle \) is a well-ordering with \(a \in A \), then \(\langle A, < \rangle \not\cong \langle A_a, <_a \rangle \)

iso rev: 016d2bc (2024-06-22) by OLP / CC–BY
Proof. For reductio, suppose \(f : A \to A \) is an isomorphism. Since \(f \) is a bijection and \(A \subseteq A \), using ?? let \(b \in A \) be the \(<\)-least element of \(A \) such that \(b \neq f(b) \). We’ll show that \((\forall x \in A)(x < b \leftrightarrow x < f(b)) \), from which it will follow by ?? that \(b = f(b) \), completing the reductio.

Suppose \(x < b \). So \(x = f(x) \), by the choice of \(b \). And \(f(x) < f(b) \), as \(f \) is an isomorphism. So \(x < f(b) \).

Suppose \(x < f(b) \). So \(f^{-1}(x) < b \), since \(f \) is an isomorphism, and so \(f^{-1}(x) = x \) by the choice of \(b \). So \(x < b \).

Our next result shows, roughly put, that an “initial segment” of an isomorphism is an isomorphism:

Lemma ordinals.7. Let \(\langle A, < \rangle \) and \(\langle B, \ll \rangle \) be well-orderings. If \(f : A \to B \) is an isomorphism and \(a \in A \), then \(f \restriction A_a : A_a \to B_{f(a)} \) is an isomorphism.

Proof. Since \(f \) is an isomorphism:

\[
\begin{align*}
 f[A_a] &= f[\{x \in A : x < a\}] \\
 &= f[\{f^{-1}(y) \in A : f^{-1}(y) < a\}] \\
 &= \{y \in B : y < f(a)\}
\end{align*}
\]

And \(f \restriction A_a \) preserves order because \(f \) does.

Our next two results establish that well-orderings are always comparable:

Lemma ordinals.8. Let \(\langle A, < \rangle \) and \(\langle B, \ll \rangle \) be well-orderings. If \(\langle A_{a_1}, <_{a_1} \rangle \cong \langle B_{b_1}, \ll_{b_1} \rangle \) and \(\langle A_{a_2}, <_{a_2} \rangle \cong \langle B_{b_2}, \ll_{b_2} \rangle \), then \(a_1 < a_2 \) iff \(b_1 \ll b_2 \).

Proof. We will prove \(\text{left to right} \); the other direction is similar. Suppose both \(\langle A_{a_1}, <_{a_1} \rangle \cong \langle B_{b_1}, \ll_{b_1} \rangle \) and \(\langle A_{a_2}, <_{a_2} \rangle \cong \langle B_{b_2}, \ll_{b_2} \rangle \), with \(f : A_{a_2} \to B_{b_2} \) our isomorphism. Let \(a_1 < a_2 \); then \(\langle A_{a_1}, <_{a_1} \rangle \cong \langle B_{f(a_1)}, \ll_{f(a_1)} \rangle \) by Lemma ordinals.7. So \(\langle B_{b_1}, \ll_{b_1} \rangle \cong \langle B_{f(a_1)}, \ll_{f(a_1)} \rangle \), and so \(b_1 \ll f(a_1) \) by Lemma ordinals.6. Now \(b_1 \ll b_2 \) as \(f \)’s domain is \(B_{b_2} \).

Theorem ordinals.9. Given any two well-orderings, one is isomorphic to an initial segment (not necessarily proper) of the other.

Proof. Let \(\langle A, < \rangle \) and \(\langle B, \ll \rangle \) be well-orderings. Using Separation, let

\[
 f = \{\langle a, b \rangle \in A \times B : \langle A_{a}, <_{a} \rangle \cong \langle B_{b}, \ll_{b} \rangle \}.
\]

By Lemma ordinals.8, \(a_1 < a_2 \) iff \(b_1 \ll b_2 \) for all \(\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle \in f \). So \(f : \text{dom}(f) \to \text{ran}(f) \) is an isomorphism.

If \(a_2 \in \text{dom}(f) \) and \(a_1 < a_2 \), then \(a_1 \in \text{dom}(f) \) by Lemma ordinals.7; so \(\text{dom}(f) \) is an initial segment of \(A \). Similarly, \(\text{ran}(f) \) is an initial segment of \(B \). For reductio, suppose both are \(\text{proper} \) initial segments. Then let \(a \) be the \(<\)-least element of \(A \setminus \text{dom}(f) \), so that \(\text{dom}(f) = A_a \), and let \(b \) be the \(<\)-least element of \(B \setminus \text{ran}(f) \), so that \(\text{ran}(f) = B_b \). So \(f : A_a \to B_b \) is an isomorphism, and hence \(\langle a, b \rangle \in f \), a contradiction.