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explanationQuantification over second-order variables is responsible for an immense in-
crease in the expressive power of the language over that of first-order logic.
Second-order existential quantification lets us say that functions or relations
with certain properties exists. In first-order logic, the only way to do that is to
specify a non-logical symbol (i.e., a function symbol or predicate symbol) for
this purpose. Second-order universal quantification lets us say that all subsets
of, relations on, or functions from the domain to the domain have a property.
In first-order logic, we can only say that the subsets, relations, or functions
assigned to one of the non-logical symbols of the language have a property.
And when we say that subsets, relations, functions exist that have a property,
or that all of them have it, we can use second-order quantification in specifying
this property as well. This lets us define relations not definable in first-order
logic, and express properties of the domain not expressible in first-order logic.

Definition syn.1. If M is a structure for a language L, a relation R ⊆ |M|2 is
definable in L if there is some formula ϕR(x, y) with only the variables x and y
free, such that R(a, b) holds (i.e., 〈a, b〉 ∈ R) iff M, s � ϕR(x, y) for s(x) = a
and s(y) = b.

Example syn.2. In first-order logic we can define the identity relation Id|M|
(i.e., {〈a, a〉 : a ∈ |M|}) by the formula x = y. In second-order logic, we can
define this relation without =. For if a and b are the same element of |M|, then
they are elements of the same subsets of |M| (since sets are determined by their
elements). Conversely, if a and b are different, then they are not elements of
the same subsets: e.g., a ∈ {a} but b /∈ {a} if a 6= b. So “being elements of
the same subsets of |M|” is a relation that holds of a and b iff a = b. It is a
relation that can be expressed in second-order logic, since we can quantify over
all subsets of |M|. Hence, the following formula defines Id|M|:

∀X (X(x)↔X(y))

Problem syn.1. Show that ∀X (X(x) → X(y)) (note: → not ↔!) defines
Id|M|.

Example syn.3. If R is a two-place predicate symbol, RM is a two-place
relation on |M|. Perhaps somewhat confusingly, we’ll use R as the predicate
symbol for R and for the relation RM itself. The transitive closure R∗ of R
is the relation that holds between a and b iff for some c1, . . . , ck, R(a, c1),
R(c1, c2), . . . , R(ck, b) holds. This includes the case if k = 0, i.e., if R(a, b)
holds, so does R∗(a, b). This means that R ⊆ R∗. In fact, R∗ is the smallest
relation that includes R and that is transitive. We can say in second-order
logic that X is a transitive relation that includes R:

ψR(X) ≡ ∀x∀y (R(x, y)→X(x, y)) ∧
∀x∀y ∀z ((X(x, y) ∧X(y, z))→X(x, z)).
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The first conjunct says that R ⊆ X and the second that X is transitive.
To say thatX is the smallest such relation is to say that it is itself included in

every relation that includes R and is transitive. So we can define the transitive
closure of R by the formula

R∗(X) ≡ ψR(X) ∧ ∀Y (ψR(Y )→∀x∀y (X(x, y)→ Y (x, y))).

We have M, s � R∗(X) iff s(X) = R∗. The transitive closure of R cannot be
expressed in first-order logic.
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