Definition lin.1. An abstract logic is a pair \(\langle L, |=_L \rangle \), where \(L \) is a function that assigns to each language \(L \) a set \(L(L) \) of sentences, and \(|=_L \) is a relation between structures for the language \(L \) and elements of \(L(L) \). In particular, \(\langle F, |= \rangle \) is ordinary first-order logic, i.e., \(F \) is the function assigning to the language \(L \) the set of first-order sentences built from the constants in \(L \), and \(|= \) is the satisfaction relation of first-order logic.

Notice that we are still employing the same notion of structure for a given language as for first-order logic, but we do not presuppose that sentences are build up from the basic symbols in \(L \) in the usual way, nor that the relation \(|=_L \) is recursively defined in the same way as for first-order logic. So for instance the definition, being completely general, is intended to capture the case where sentences in \(\langle L, |=_L \rangle \) contain infinitely long conjunctions or disjunction, or quantifiers other than \(\exists \) and \(\forall \) (e.g., “there are infinitely many \(x \) such that . . .”), or perhaps infinitely long quantifier prefixes. To emphasize that “sentences” in \(L(L) \) need not be ordinary sentences of first-order logic, in this chapter we use variables \(\alpha, \beta, \ldots \) to range over them, and reserve \(\varphi, \psi, \ldots \) for ordinary first-order formulas.

Definition lin.2. Let \(\text{Mod}_L(\alpha) \) denote the class \(\{ M : M |=_L \alpha \} \). If the language needs to be made explicit, we write \(\text{Mod}^L_L(\alpha) \). Two structures \(M \) and \(N \) for \(L \) are elementarily equivalent in \(\langle L, |=_L \rangle \), written \(M \equiv L N \), if the same sentences from \(L(L) \) are true in each.

Definition lin.3. An abstract logic \(\langle L, |=_L \rangle \) for the language \(L \) is normal if it satisfies the following properties:

1. (\(L \)-Monotonicity) For languages \(L \) and \(L' \), if \(L \subseteq L' \), then \(L(L) \subseteq L(L') \).
2. (Expansion Property) For each \(\alpha \in L(L) \) there is a finite subset \(L' \) of \(L \) such that the relation \(M |=_L \alpha \) depends only on the reduct of \(M \) to \(L' \); i.e., if \(M \) and \(N \) have the same reduct to \(L' \) then \(M |=_L \alpha \) if and only if \(N |=_L \alpha \).
3. (Isomorphism Property) If \(M |=_L \alpha \) and \(M \simeq N \) then also \(N |=_L \alpha \).
4. (Renaming Property) The relation \(|=_L \) is preserved under renaming: if the language \(L' \) is obtained from \(L \) by replacing each symbol \(P \) by a symbol \(P' \) of the same arity and each constant \(c \) by a distinct constant \(c' \), then for each structure \(M \) and sentence \(\alpha \), \(M |=_L \alpha \) if and only if \(M' |=_L \alpha' \), where \(M' \) is the \(L' \)-structure corresponding to \(L \) and \(\alpha' \in L(L') \).
5. (Boolean Property) The abstract logic \(\langle L, |=_L \rangle \) is closed under the Boolean connectives in the sense that for each \(\alpha \in L(L) \) there is a \(\beta \in L(L) \) such that \(\beta \) if and only if \(\neg \alpha \), and for each \(\alpha \) and \(\beta \) there is a \(\gamma \)
such that \(\text{Mod}_L(\gamma) = \text{Mod}_L(\alpha) \cap \text{Mod}_L(\beta) \). Similarly for atomic formulas and the other connectives.

6. (Quantifier Property) For each constant \(c \) in \(L \) and \(\alpha \in L(\mathcal{L}) \) there is a \(\beta \in L(\mathcal{L}) \) such that

\[
\text{Mod}_L' = \{ \mathcal{M} : (\mathcal{M}, a) \in \text{Mod}_L(\alpha) \text{ for some } a \in |\mathcal{M}| \},
\]

where \(L' = L \setminus \{ c \} \) and \((\mathcal{M}, a) \) is the expansion of \(\mathcal{M} \) to \(L \) assigning \(a \) to \(c \).

7. (Relativization Property) Given a sentence \(\alpha \in L(\mathcal{L}) \) and symbols \(R, c_1, \ldots, c_n \) not in \(L \), there is a sentence \(\beta \in L(\mathcal{L} \cup \{ R, c_1, \ldots, c_n \}) \) called the relativization of \(\alpha \) to \(R(x, c_1, \ldots, c_n) \), such that for each structure \(\mathcal{M} : (\mathcal{M}, X, b_1, \ldots, b_n) \models L \beta \) if and only if \(\mathcal{M} \models L \alpha \), where \(\mathcal{M} \) is the substructure of \(\mathcal{M} \) with domain \(|\mathcal{M}| = \{ a \in |\mathcal{M}| : R(a, b_1, \ldots, b_n) \} \) (see ??), and \((\mathcal{M}, X, b_1, \ldots, b_n) \) is the expansion of \(\mathcal{M} \) interpreting \(R, c_1, \ldots, c_n \) by \(X, b_1, \ldots, b_n \), respectively (with \(X \subseteq M^{n+1} \)).

Definition lin.4. Given two abstract logics \(\langle L_1, \models_{L_1} \rangle \) and \(\langle L_2, \models_{L_2} \rangle \) we say that the latter is at least as expressive as the former, written \(\langle L_1, \models_{L_1} \rangle \leq \langle L_2, \models_{L_2} \rangle \), if for each language \(\mathcal{L} \) and sentence \(\alpha \in L_1(\mathcal{L}) \) there is a sentence \(\beta \in L_2(\mathcal{L}) \) such that \(\text{Mod}_{L_1}(\alpha) = \text{Mod}_{L_2}(\beta) \). The logics \(\langle L_1, \models_{L_1} \rangle \) and \(\langle L_2, \models_{L_2} \rangle \) are equivalent if \(\langle L_1, \models_{L_1} \rangle \leq \langle L_2, \models_{L_2} \rangle \) and \(\langle L_2, \models_{L_2} \rangle \leq \langle L_1, \models_{L_1} \rangle \).

Remark 1. First-order logic, i.e., the abstract logic \(\langle F, \models \rangle \), is normal. In fact, the above properties are mostly straightforward for first-order logic. We just remark that the expansion property comes down to extensionality, and that the relativization of a sentence \(\alpha \) to \(R(x, c_1, \ldots, c_n) \) is obtained by replacing each subformula \(\forall x \beta \) by \(\forall x (R(x, c_1, \ldots, c_n) \rightarrow \beta) \). Moreover, if \(\langle L, \models_L \rangle \) is normal, then \(\langle F, \models \rangle \leq \langle L, \models_L \rangle \), as can be can shown by induction on first-order formulas. Accordingly, with no loss in generality, we can assume that every first-order sentence belongs to every normal logic.

Photo Credits

Bibliography