The usual many-valued logics are all defined using matrices in which the value of a truth-function for arguments in \(\{T, F\} \) agrees with the classical truth functions. Specifically, in these logics, if \(x \in \{T, F\} \), then \(\neg_L(x) = \neg_C(x) \), and for any one of \(\land, \lor, \to \), if \(x, y \in \{T, F\} \), then \(\land_L(x, y) = \land_C(x, y) \). In other words, the truth functions for \(\neg, \land, \lor, \to \) restricted to \(\{T, F\} \) are exactly the classical truth functions.

Proposition syn.1. Suppose that a many-valued logic \(L \) contains the connectives \(\neg, \land, \lor, \to \) in its language, \(T, F \in V \), and its truth functions satisfy:

1. \(\neg_L(x) = \neg_C(x) \) if \(x = T \) or \(x = F \);
2. \(\land_L(x, y) = \land_C(x, y) \),
3. \(\lor_L(x, y) = \lor_C(x, y) \), if \(x, y \in \{T, F\} \).

Then, for any valuation \(v \) into \(V \) such that \(v(p) \in \{T, F\} \), \(v_L(\varphi) = v_C(\varphi) \).

Proof. By induction on \(\varphi \).

1. If \(\varphi \equiv p \) is atomic, we have \(v_L(\varphi) = v(p) = v_C(\varphi) \).

2. If \(\varphi \equiv \neg B \), we have

 \[
 v_L(\varphi) = \neg_L(v_L(\psi)) \quad \text{ by ??} \\
 = \neg_L(v_C(\psi)) \quad \text{ by inductive hypothesis} \\
 = \neg_C(v_C(\psi)) \quad \text{ by assumption (1), since } v_C(\psi) \in \{T, F\}, \\
 = v_C(\varphi) \quad \text{ by ??}.
 \]

3. If \(\varphi \equiv (\psi \land \chi) \), we have

 \[
 v_L(\varphi) = \land_L(v_L(\psi), v_L(\chi)) \quad \text{ by ??} \\
 = \land_L(v_C(\psi), v_C(\chi)) \quad \text{ by inductive hypothesis} \\
 = \land_C(v_C(\psi), v_C(\chi)) \quad \text{ by assumption (2), since } v_C(\psi), v_C(\chi) \in \{T, F\}, \\
 = v_C(\varphi) \quad \text{ by ??}.
 \]

The cases where \(\varphi \equiv (\psi \lor \chi) \) and \(\varphi \equiv (\psi \to \chi) \) are similar.

Corollary syn.2. If a many-valued logic satisfies the conditions of Proposition syn.1, \(T \in V^+ \) and \(F \notin V^+ \), then \(\models_L \psi \) if and only if \(\models_C \psi \). In particular, every tautology of \(L \) is also a classical tautology.
Proof. We prove the contrapositive. Suppose $\Gamma \not\models_C \psi$. Then there is some valuation $v: \text{At}_0 \to \{T, F\}$ such that $v_C(\varphi) = T$ for all $\varphi \in \Gamma$ and $v_C(\psi) = F$. Since $T, F \in V$, the valuation v is also a valuation for L. By Proposition syn.1, $v_L(\varphi) = T$ for all $\varphi \in \Gamma$ and $v_L(\psi) = F$. Since $T \in V^+$ and $F \notin V^+$ that means $v \models_L \Gamma$ and $v \not\models_L \psi$, i.e., $\Gamma \not\models_L \psi$. \hfill \Box

Photo Credits

Bibliography