The inference rules for a connective in an n-sided sequent calculus only depend on the characteristic truth function for the connective. Thus, if some connective is defined by the same truth function in different logics, these n-sided sequent rules for the connective are the same in those logics.

Rules for \neg

The following rules for \neg apply to Lukasiewicz and Kleene logics, and their variants.

\[
\frac{\Gamma \mid \Pi \mid \Delta, \varphi}{\neg \varphi, \Gamma \mid \Pi \mid \Delta} \quad \neg F \\
\frac{\Gamma \mid \varphi, \Pi \mid \Delta}{\Gamma \mid \neg \varphi, \Pi \mid \Delta} \quad \neg U \\
\frac{\varphi, \Gamma \mid \Pi \mid \Delta}{\Gamma \mid \Pi \mid \Delta, \neg \varphi} \quad \neg T
\]

The following rules for \neg apply to Gödel logic.

\[
\frac{\Gamma \mid \varphi, \Pi \mid \Delta, \varphi}{\neg \varphi, \Gamma \mid \Pi \mid \Delta} \quad \neg G F \\
\frac{\varphi, \Gamma \mid \Pi \mid \Delta}{\Gamma \mid \Pi \mid \Delta, \neg \varphi} \quad \neg G T
\]

(In Gödel logic, $\neg \varphi$ can never take the value U, so there is no rule for the middle position.)

Rules for \land

These are the rules for \land in Lukasiewicz, strong Kleene, and Gödel logic.

\[
\frac{\varphi, \psi, \Gamma \mid \Pi \mid \Delta}{\varphi \land \psi, \Gamma \mid \Pi \mid \Delta} \quad \land F \\
\frac{\Gamma \mid \varphi, \Pi \mid \varphi, \Delta}{\Gamma \mid \psi, \Pi \mid \psi, \Delta} \quad \land F \\
\frac{\Gamma \mid \varphi \land \psi, \Pi \mid \Delta}{\Gamma \mid \varphi, \psi, \Pi \mid \Delta} \quad \land U \\
\frac{\Gamma \mid \Pi \mid \Delta, \varphi}{\Gamma \mid \Pi \mid \Delta, \varphi \land \psi} \quad \land T \\
\frac{\Gamma \mid \Pi \mid \Delta, \psi}{\Gamma \mid \Pi \mid \Delta, \varphi \land \psi}
\]

propositional-rules rev: 016d2bc (2024-06-22) by OLP / CC–BY
Rules for \lor

These are the rules for \lor in Łukasiewicz, strong Kleene, and Gödel logic.

\[
\begin{array}{c}
\frac{\phi, \Gamma \mid \Pi \mid \Delta \quad \psi, \Gamma \mid \Pi \mid \Delta}{\phi \lor \psi, \Gamma \mid \Pi \mid \Delta} \quad \lor_F \\
\frac{\phi, \Gamma \mid \varphi, \Pi \mid \Delta \quad \psi, \Gamma \mid \psi, \Pi \mid \Delta \quad \Gamma \mid \varphi, \psi, \Pi \mid \Delta}{\Gamma \mid \varphi \lor \psi, \Pi \mid \Delta} \quad \lor_U \\
\frac{\Gamma \mid \Pi \mid \Delta, \varphi, \psi}{\Gamma \mid \Pi \mid \Delta, \varphi \lor \psi} \quad \lor_T
\end{array}
\]

Rules for \to

These are the rules for \to in Łukasiewicz logic.

\[
\begin{array}{c}
\frac{\Gamma \mid \Pi \mid \Delta, \varphi \quad \psi, \Gamma \mid \Pi \mid \Delta}{\varphi \to \psi, \Gamma \mid \Pi \mid \Delta} \quad \to_{L_3} F \\
\frac{\Gamma \mid \varphi, \psi, \Pi \mid \Delta \quad \psi, \Gamma \mid \psi, \Pi \mid \Delta \quad \Gamma \mid \varphi, \psi, \Pi \mid \Delta, \varphi}{\Gamma \mid \varphi \to \psi, \Pi \mid \Delta} \quad \to_{L_3} U \\
\frac{\phi, \Gamma \mid \psi, \Pi \mid \Delta, \psi \quad \varphi, \Gamma \mid \varphi, \Pi \mid \Delta, \psi}{\Gamma \mid \Pi \mid \Delta, \varphi \to \psi} \quad \to_{L_3} T
\end{array}
\]

These are the rules for \to in strong Kleene logic.

\[
\begin{array}{c}
\frac{\Gamma \mid \Pi \mid \Delta, \varphi \quad \psi, \Gamma \mid \Pi \mid \Delta}{\varphi \to \psi, \Gamma \mid \Pi \mid \Delta} \quad \to_{Ks} F \\
\frac{\psi, \Gamma \mid \psi, \Pi \mid \Delta \quad \Gamma \mid \varphi, \psi, \Pi \mid \Delta \quad \Gamma \mid \varphi, \Pi \mid \Delta, \varphi}{\Gamma \mid \varphi \to \psi, \Pi \mid \Delta} \quad \to_{Ks} U \\
\frac{\phi, \Gamma \mid \Pi \mid \Delta, \psi}{\Gamma \mid \Pi \mid \Delta, \varphi \to \psi} \quad \to_{Ks} T
\end{array}
\]

These are the rules for \to in Gödel logic.
\[
\begin{align*}
\Gamma | \varphi, \Pi | \Delta, \varphi & \quad \psi, \Gamma | \Pi | \Delta \\
\varphi & \rightarrow \psi, \Gamma | \Pi | \Delta & \rightarrow_{G_3} F\\
\Gamma | \psi, \Pi | \Delta & \quad \Gamma | \Pi | \Delta, \varphi \\
\Gamma & \rightarrow \varphi, \Pi | \Delta & \rightarrow_{G_3} U\\
\varphi, \Gamma | \psi, \Pi | \Delta, \psi & \quad \varphi, \Gamma | \psi, \Pi | \Delta, \psi \\
\Gamma | \Pi | \Delta, \varphi & \rightarrow \psi & \rightarrow_{G_3} T
\end{align*}
\]

Photo Credits

Bibliography
Figure 1: Example derivation in L_3.