inf.1 Lukasiewicz logic

mvl:inf:luk: sec

This is a short "stub" of a section on infinite-valued Łukasiewicz logic.

mvl:inf:luk: **Definition inf.1.** Infinite-valued Łukasiewicz logic \mathbf{L}_{∞} is defined using the def:lukasiewicz matrix:

- 1. The standard propositional language \mathcal{L}_0 with $\neg, \land, \lor, \rightarrow$.
- 2. The set of truth values V_{∞} .
- 3. 1 is the only designated value, i.e., $V^+ = \{1\}$.
- 4. Truth functions are given by the following functions:

$$\begin{split} \widetilde{\neg}_{\mathbf{L}}(x) &= 1 - x\\ \widetilde{\wedge}_{\mathbf{L}}(x, y) &= \min(x, y)\\ \widetilde{\vee}_{\mathbf{L}}(x, y) &= \max(x, y)\\ \widetilde{\rightarrow}_{\mathbf{L}}(x, y) &= \min(1, 1 - (x - y)) = \begin{cases} 1 & \text{if } x \leq y\\ 1 - (x - y) & \text{otherwise.} \end{cases} \end{split}$$

m-valued Łukasiewicz logic is defined the same, except $V = V_m$.

Proposition inf.2. The logic L_3 defined by ?? is the same as L_3 defined by *Definition inf.1*.

Proof. This can be seen by comparing the truth tables for the connectives given in ?? with the truth tables determined by the equations in Definition inf.1:

	$\widetilde{\neg}$			$\widetilde{\wedge}_{\mathbf{L}_3}$	1	1/	/2	0	
	1	0		1	$\begin{array}{c c}1\\1/2\\0\end{array}$	1,	/2	0	
	1/2	1/2		1/2	1/2	1,	/2	0	
	0	1		0	0	()	0	
~					~ 1			_	
$\widetilde{\vee}_{\mathbf{L}_3}$	1	1/2	0		$\widetilde{\rightarrow}_{\mathbf{L}_3}$	1	1/2	2	0
1					1	1	1/2	2	0
1/2	1	1/2	1/2		1/2	1	1		1/2
$\begin{array}{c} 1/2 \\ 0 \end{array}$	1	1/2	0		$\begin{array}{c c} 1/2 \\ 0 \end{array}$	1	1		1

mvl:inf:luk: **Proposition inf.3.** If $\Gamma \vDash_{L_{\infty}} \psi$ then $\Gamma \vDash_{L_m} \psi$ for all $m \ge 2$. *prop:luk-infty-m*

Proof. Exercise.

Problem inf.1. Prove Proposition inf.3.

lukasiewicz rev: ad37848 (2024-05-01) by OLP / CC-BY

1

In fact, the converse holds as well.

Infinite-valued Łukasiewicz logic is the most popular fuzzy logic. In the fuzzy logic literature, the conditional is often defined as $\neg \varphi \lor \psi$. The result would be an infinite-valued strong Kleene logic.

Problem inf.2. Show that $(p \to q) \lor (q \to p)$ is a tautology of \mathbf{L}_{∞} .

Photo Credits

Bibliography