inf.1 Łukasiewicz logic

mvl:inf:luk:

This is a short "stub" of a section on infinite-valued Łukasiewicz logic.

def:lukasiewicz

myl:inf:luk: Definition inf.1. Infinite-valued Łukasiewicz logic \mathbf{L}_{∞} is defined using the matrix:

- 1. The standard propositional language \mathcal{L}_0 with \neg , \wedge , \vee , \rightarrow .
- 2. The set of truth values V_{∞} .
- 3. 1 is the only designated value, i.e., $V^+ = \{1\}$.
- 4. Truth functions are given by the following functions:

$$\begin{split} &\widetilde{\gamma}_{\mathbf{L}}(x) = 1 - x \\ &\widetilde{\wedge}_{\mathbf{L}}(x,y) = \min(x,y) \\ &\widetilde{\vee}_{\mathbf{L}}(x,y) = \max(x,y) \\ &\widetilde{\rightarrow}_{\mathbf{L}}(x,y) = \min(1,1 - (x-y)) = \begin{cases} 1 & \text{if } x \leq y \\ 1 - (x-y) & \text{otherwise.} \end{cases} \end{split}$$

m-valued Łukasiewicz logic is defined the same, except $V = V_m$.

Proposition inf.2. The logic L_3 defined by ?? is the same as L_3 defined by Definition inf.1.

Proof. This can be seen by comparing the truth tables for the connectives given in ?? with the truth tables determined by the equations in Definition inf.1:

prop:luk-infty-m

multinfiluk: Proposition inf.3. If $\Gamma \vDash_{\mathbf{L}_{\infty}} \psi$ then $\Gamma \vDash_{\mathbf{L}_{m}} \psi$ for all $m \geq 2$.

Proof. Exercise.

Problem inf.1. Prove Proposition inf.3.

In fact, the converse holds as well.

Infinite-valued Łukasiewicz logic is the most popular fuzzy logic. In the fuzzy logic literature, the conditional is often defined as $\neg \varphi \lor \psi$. The result would be an infinite-valued strong Kleene logic.

Problem inf.2. Show that $(p \to q) \lor (q \to p)$ is a tautology of \mathbf{L}_{∞} .

Photo Credits

Bibliography