inf.1 Gödel logics

mvl:inf:god: sec

This is a short "stub" of a section on infinite-valued Gödel logic.

mvl:inf:god: **Definition inf.1.** Infinite-valued Gödel logic \mathbf{G}_{∞} is defined using the matrix: def:godel

- 1. The standard propositional language \mathcal{L}_0 with \perp , \neg , \land , \lor , \rightarrow .
- 2. The set of truth values V_{∞} .
- 3. 1 is the only designated value, i.e., $V^+ = \{1\}$.
- 4. Truth functions are given by the following functions:

$$\begin{split} \widetilde{\bot} &= 0\\ \widetilde{\neg}_{\mathbf{G}}(x) = \begin{cases} 1 & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}\\ \widetilde{\wedge}_{\mathbf{G}}(x,y) &= \min(x,y)\\ \widetilde{\vee}_{\mathbf{G}}(x,y) &= \max(x,y)\\ \widetilde{\rightarrow}_{\mathbf{G}}(x,y) &= \begin{cases} 1 & \text{if } x \leq y\\ y & \text{otherwise.} \end{cases} \end{split}$$

m-valued Gödel logic is defined the same, except $V = V_m$.

Proposition inf.2. The logic G_3 defined by ?? is the same as G_3 defined by *Definition inf.1*.

Proof. This can be seen by comparing the truth tables for the connectives given in **??** with the truth tables determined by the equations in Definition inf.1:

	$\widetilde{\neg}_{\mathbf{G}}$	3	$\widetilde{\wedge}_{\mathbf{G}}$	1	1/2	0	
	1	0	1	1	1/2	0	
	1/2	2 0	1/2	1/2	1/2	0	
	0	1	0	0	0	0	
~				\sim	1		
$\vee_{\mathbf{G}}$	1	1/2	0	$\rightarrow_{\mathbf{G}}$	1	1/2	0
1	1	1	1	1	1	1/2	0
1/2	1	1/2	1/2	1/2	1	1	0
0	1	1/2	0	0	1	1	1

mvl:inf:god: **Proposition inf.3.** If $\Gamma \vDash_{\mathbf{G}_{\infty}} \psi$ then $\Gamma \vDash_{\mathbf{G}_{m}} \psi$ for all $m \geq 2$.

Proof. Exercise.

goedel rev: ad37848 (2024-05-01) by OLP / CC-BY

1

Problem inf.1. Prove Proposition inf.3.

In fact, the converse holds as well.

Like \mathbf{G}_3 , \mathbf{G}_∞ has all intuitionistically valid formulas as tautologies, and the same examples of non-tautologies are non-tautologies of \mathbf{G}_∞ :

$p \vee \neg p$	$(p \to q) \to (\neg p \lor q)$
$\neg\neg p \to p$	$\neg(\neg p \land \neg q) \to (p \lor q)$
$((p \to q) \to p) \to p$	$\neg(p \to q) \to (p \land \neg q)$

The example of an intuitionistically invalid formula that is nevertheless a tautology of \mathbf{G}_3 , $(p \to q) \lor (q \to p)$, is also a tautology in \mathbf{G}_{∞} . In fact, \mathbf{G}_{∞} can be characterized as intuitionistic logic to which the schema $(\varphi \to \psi) \lor (\psi \to \varphi)$ is added. This was shown by Michael Dummett, and so \mathbf{G}_{∞} is often referred to as Gödel–Dummett logic **LC**.

Problem inf.2. Show that $(p \to q) \lor (q \to p)$ is a tautology of \mathbf{G}_{∞} .

Problem inf.3. Show that $(p \to q) \lor (q \to r) \lor (r \to s)$, which is a tautology of \mathbf{G}_3 , is not a tautology of \mathbf{G}_∞ .

Photo Credits

Bibliography