We may wonder if for each term there is a unique way of forming it, and there is. For each lambda term there is only one way to construct and interpret it. In the following discussion, a formation is the procedure of constructing a term using the formation rules (one or several times) of

Lemma syn.1. A term starts with either a variable or a parenthesis.

Proof. Something counts as a term only if it is constructed according to

Lemma syn.2. The result of an application starts with either two parentheses or a parenthesis and a variable.

Proof. If \(M \) is the result of an application, it is of the form \((PQ) \), so it begins with a parenthesis. Since \(P \) is a term, by Lemma syn.1, it begins either with a parenthesis or a variable.

Lemma syn.3. No proper initial part of a term is itself a term.

Problem syn.1. Prove Lemma syn.3 by induction on the length of terms.

Proposition syn.4 (Unique Readability). There is a unique formation for each term. In other words, if a term \(M \) is formed by a formation, then it is the only formation that can form this term.

Proof. We prove this by induction on the formation of terms.

1. \(M \) is of the form \(x \), where \(x \) is some variable. Since the results of abstractions and applications always start with parentheses, they cannot have been used to construct \(M \); Thus, the formation of \(M \) must be a single step of

2. \(M \) is of the form \((\lambda x. N) \), where \(x \) is some variable and \(N \) is a term. It could not have been constructed according to

3. \(M \) is of the form \((PQ) \), where \(P \) and \(Q \) are terms. Since it starts with a parentheses, it cannot also be constructed by

unique-readability rev: 016d2bc (2024-06-22) by OLP / CC–BY
A more readable paraphrase of the above proposition is as follows:

Proposition syn.5. A term M can only be one of the following forms:

1. x, where x is a variable uniquely determined by M.

2. $(\lambda x. N)$, where x is a variable and N is another term, both of which is uniquely determined by M.

3. (PQ), where P and Q are two terms uniquely determined by M.

Photo Credits

Bibliography