α-Equivalence is very natural, as terms that are α-equivalent “mean the same.” In fact, it is possible to give a syntax for lambda terms which does not distinguish terms that can be α-converted to each other. The best known replaces variables by their De Bruijn index.

When we write \(\lambda x.M \), we explicitly state that \(x \) is the parameter of the function, so that we can use \(x \) in \(M \) to refer to this parameter. In the de Bruijn index, however, parameters have no name and reference to them in the function body is denoted by a number denoting the levels of abstraction between them. For example, consider the example of \(\lambda x. \lambda y. yx \): the outer abstraction is on binds the variable \(x \); the inner abstraction binds the variable is \(y \); the sub-term \(yx \) lies in the scope of the inner abstraction: there is no abstraction between \(y \) and its abstract \(\lambda y \), but one abstract between \(x \) and its abstract \(\lambda x \). Thus we write \(0 \ 1 \) for \(yx \), and \(\lambda. \lambda.0\) for the entire term.

Definition syn.1. De Bruijn terms are inductively defined as follows:

1. \(n \), where \(n \) is any natural number.
2. \(PQ \), where \(P \) and \(Q \) are both De Bruijn terms.
3. \(\lambda. N \), where \(N \) is a De Bruijn term.

A formalized translation from ordinary lambda terms to De Bruijn indexed terms is as follows:

Definition syn.2.

\[
\begin{align*}
F_{\Gamma}(x) &= \Gamma(x) \\
F_{\Gamma}(PQ) &= F_{\Gamma}(P)F_{\Gamma}(Q) \\
F_{\Gamma}(\lambda x. N) &= \lambda x.F_{\Gamma}(x)N
\end{align*}
\]

where \(\Gamma \) is a list of variables indexed from zero, and \(\Gamma(x) \) denotes the position of the variable \(x \) in \(\Gamma \). For example, if \(\Gamma \) is \(x, y, z \), then \(\Gamma(x) \) is 0 and \(\Gamma(z) \) is 2.

\(x, \Gamma \) denotes the list resulted from pushing \(x \) to the head of \(\Gamma \); for instance, continuing the \(\Gamma \) in last example, \(w, \Gamma \) is \(w, x, y, z \).

Recovering a standard lambda term from a de Bruijn term is done as follows:

Definition syn.3.

\[
\begin{align*}
G_{\Gamma}(n) &= \Gamma[n] \\
G_{\Gamma}(PQ) &= G_{\Gamma}(P)G_{\Gamma}(Q) \\
G_{\Gamma}(\lambda. N) &= \lambda x.G_{\Gamma}(x)N
\end{align*}
\]

where \(\Gamma \) is again a list of variables indexed from zero, and \(\Gamma[n] \) denotes the variable in position \(n \). For example, if \(\Gamma \) is \(x, y, z \), then \(\Gamma[1] \) is \(y \).

The variable \(x \) in last equation is chosen to be any variable that not in \(\Gamma \).
Here we give some results without proving them:

Proposition syn.4. If $M \xrightarrow{\alpha} M'$, and Γ is any list containing $\text{FV}(M)$, then $F_{\Gamma}(M) \equiv F_{\Gamma}(M')$.

Photo Credits

Bibliography