ldf.1 Pairs and Predecessor

Definition ldf.1. The pair of \(M\) and \(N\) (written \(\langle M, N \rangle\)) is defined as follows:

\[
\langle M, N \rangle \equiv \lambda f. fMN.
\]

Intuitively it is a function that accepts a function, and applies that function to the two elements of the pair. Following this idea we have this constructor, which takes two terms and returns the pair containing them:

\[
\text{Pair} \equiv \lambda mn. \lambda f. fmn
\]

Given a pair, we also want to recover its elements. For this we need two access functions, which accept a pair as argument and return the first or second elements in it:

\[
\text{Fst} \equiv \lambda p. p(\lambda mn. m)
\]
\[
\text{Snd} \equiv \lambda p. p(\lambda mn. n)
\]

Problem ldf.1. Explain why the access functions Fst and Snd work.

Now with pairs we can \(\lambda\)-define the predecessor function:

\[
\text{Pred} \equiv \lambda n. \text{Fst}(n(\lambda p. (\text{Snd}\ p, \text{Succ}\ (\text{Snd}\ p)))(0,0))
\]

Remember that \(\pi f x\) reduces to \(f^n(x)\); in this case \(f\) is a function that accepts a pair \(p\) and returns a new pair containing the second component of \(p\) and the successor of the second component; \(x\) is the pair \((0, 0)\). Thus, the result is \((0, 0)\) for \(n = 0\), and \((n - 1, n)\) otherwise. Pred then returns the first component of the result.

Subtraction can be defined as Pred applied to \(a, b\) times:

\[
\text{Sub} \equiv \lambda ab. b\text{Pred}\ a.
\]

Photo Credits

Bibliography