Proposition rep.1. The successor function \(\text{succ} \) is \(\lambda \)-definable.

Proof. A term that \(\lambda \)-defines the successor function is
\[
\text{Succ} \equiv \lambda a. \lambda f x. f (a f x).
\]

Given our conventions, this is short for
\[
\text{Succ} \equiv \lambda a. \lambda f. \lambda x. (f ((a f) x)).
\]

Succ is a function that accepts as argument a number \(a \), and evaluates to another function, \(\lambda f x. f (a f x) \). That function is not itself a Church numeral. However, if the argument \(a \) is a Church numeral, it reduces to one. Consider:
\[
(\lambda a. \lambda f x. f (a f x)) \pi \rightarrow \lambda f x. f (\pi f x).
\]
The embedded term \(\pi f x \) is a redex, since \(\pi \) is \(\lambda f x. f^n x \). So \(\pi f x \rightarrow f^n x \) and so, for the entire term we have
\[
\text{Succ} \pi \Rightarrow \lambda f x. f (f^n (x)),
\]
i.e., \(n + 1 \).

Example rep.2. Let’s look at what happens when we apply Succ to \(\overline{0} \), i.e., \(\lambda f x. x \). We’ll spell the terms out in full:
\[
\text{Succ} \overline{0} \equiv (\lambda a. \lambda f. \lambda x. (f ((a f) x)))(\lambda f. \lambda x. x)
\]
\[\rightarrow \lambda f. \lambda x. (f ((\lambda f. \lambda x. x) f x))\]
\[\rightarrow \lambda f. \lambda x. (f ((\lambda x. x) x))\]
\[\rightarrow \lambda f. \lambda x. (f x) \equiv 1
\]

Problem rep.1. The term
\[
\text{Succ’} \equiv \lambda n. \lambda f x. n f (f x)
\]
\(\lambda \)-defines the successor function. Explain why.

Proposition rep.3. The addition function \(\text{add} \) is \(\lambda \)-definable.

Proof. Addition is \(\lambda \)-defined by the terms
\[
\text{Add} \equiv \lambda a b. \lambda f x. a f (b f x)
\]
or, alternatively,

\[\text{Add'} \equiv \lambda ab. a \text{ Succ } b. \]

The first addition works as follows: Add first accept two numbers \(a \) and \(b \). The result is a function that accepts \(f \) and \(x \) and returns \(af(bfx) \). If \(a \) and \(b \) are Church numerals \(\overline{a} \) and \(\overline{b} \), this reduces to \(\overline{f}^{n+m}(x) \), which is identical to \(\overline{f}^n(f^m(x)) \). Or, slowly:

\[
\begin{align*}
(\lambda ab. \lambda fx. af(bfx))\overline{a}\overline{b} \rightarrow & \lambda fx. \overline{a} f(\overline{b} f x) \\
\rightarrow & \lambda fx. \overline{a} f(\overline{b} f^2 x) \\
\rightarrow & \lambda fx. \overline{a} f^3(f^2 x) \equiv n + m.
\end{align*}
\]

The second representation of addition \(\text{Add'} \) works differently: Applied to two Church numerals \(\overline{n} \) and \(\overline{m} \),

\[\text{Add'} \overline{n} \overline{m} \rightarrow \overline{n} \text{ Succ } \overline{m}. \]

But \(\overline{f}x \) always reduces to \(f^n(x) \). So,

\[\overline{n} \text{ Succ } \overline{m} \rightarrow \text{ Succ }^n(\overline{m}). \]

And since \(\text{Succ} \) \(\lambda \)-defines the successor function, and the successor function applied \(n \) times to \(m \) gives \(n + m \), this in turn reduces to \(n + m \).

\[\square \]

Proposition rep.4. Multiplication is \(\lambda \)-definable by the term

\[\text{Mult} \equiv \lambda ab. \lambda f. a(bf)x \]

Proof. To see how this works, suppose we apply Mult to Church numerals \(\overline{n} \) and \(\overline{m} \). Mult \(\overline{n} \overline{m} \) reduces to \(\lambda fx. \overline{n}(\overline{m} f)x \). The term \(\overline{m} f \) defines a function which applies \(f \) to its argument \(m \) times. Consequently, \(\overline{n}(\overline{m} f)x \) applies the function “apply \(f \) \(m \) times” itself \(n \) times to \(x \). In other words, we apply \(f \) to \(x \), \(n \cdot m \) times. But the resulting normal term is just the Church numeral \(\overline{nm} \).

\[\square \]

We can actually simplify this term further by \(\eta \)-reduction:

\[\text{Mult} \equiv \lambda ab. \lambda f. a(bf). \]

But then we first have to explain \(\eta \)-reduction.

\[\square \]

Problem rep.2. Multiplication can be \(\lambda \)-defined by the term

\[\text{Mult'} \equiv \lambda ab. a(\text{Add } a)\overline{0}. \]

Explain why this works.
The definition of exponentiation as a λ-term is surprisingly simple:

$$\text{Exp} \equiv \lambda b e. eb.$$

The first argument b is the base and the second e is the exponent. Intuitively, ef is f^e by our encoding of numbers. If you find it hard to understand, we can still define exponentiation also by iterated multiplication:

$$\text{Exp'} \equiv \lambda b e. e(\text{Mult } b)\mathsf{T}.$$

Predecessor and subtraction on Church numeral is not as simple as we might think: it requires encoding of pairs.

Photo Credits

Bibliography