What can one do with lambda terms? Simplify them. If M and N are any lambda terms and x is any variable, we can use $M[N/x]$ to denote the result of substituting N for x in M, after renaming any bound variables of M that would interfere with the free variables of N after the substitution. For example,

$$(\lambda w. xxw)[yyz/x] = \lambda w. (yyz)(yyz)w.$$

Alternative notations for substitution are $[N/x]M$, $[x/N]M$, and also $M[x/N]$.

Beware!

Intuitively, $(\lambda x. M)N$ and $M[N/x]$ have the same meaning: the act of replacing the first term by the second is called β-contraction. $(\lambda x. M)N$ is called a redex and $M[N/x]$ its contractum. Generally, if it is possible to change a term P to P' by β-contraction of some subterm, we say that P β-reduces to P' in one step, and write $P \to P'$. If from P we can obtain P' with some number of one-step reductions (possibly none), then P β-reduces to P'; in symbols, $P \to^* P'$. A term that cannot be β-reduced any further is called β-irreducible, or β-normal. We will say "reduces" instead of "β-reduces," etc., when the context is clear.

Let us consider some examples.

1. We have

$$(\lambda x. xy)(\lambda z. z) \to (\lambda z. z)(\lambda z. z)y$$
$$\to (\lambda z. z)y$$
$$\to y.$$

2. "Simplifying" a term can make it more complex:

$$(\lambda x. xy)(\lambda x. xy) \to (\lambda x. xy)(\lambda x. xy)y$$
$$\to (\lambda x. xy)(\lambda x. xy)yy$$
$$\to \ldots$$

3. It can also leave a term unchanged:

$$(\lambda x. xx)(\lambda x. xx) \to (\lambda x. xx)(\lambda x. xx).$$

4. Also, some terms can be reduced in more than one way; for example,

$$(\lambda x. (\lambda y. yx)z)v \to (\lambda y. yv)z$$
by contracting the outermost application; and

$$(\lambda x. (\lambda y. yx)z)v \to (\lambda x. z)v$$
by contracting the innermost one. Note, in this case, however, that both terms further reduce to the same term, zv.

1
The final outcome in the last example is not a coincidence, but rather illustrates a deep and important property of the lambda calculus, known as the “Church–Rosser property.”

Photo Credits

Bibliography