When it comes to primitive recursion, we finally need to do some work. We will have to proceed in stages. As before, on the assumption that we already have terms G and H that λ-define functions g and h, respectively, we want a term H that λ-defines the function f defined by

$$f(0, \vec{z}) = g(\vec{z})$$
$$f(x + 1, \vec{z}) = h(z, f(x, \vec{z}), \vec{z}).$$

So, in general, given lambda terms G' and H', it suffices to find a term F such that

$$F(\overline{0}, \vec{z}) \equiv G(\vec{z})$$
$$F(\overline{n + 1}, \vec{z}) \equiv H(n, F(\overline{n}, \vec{z}), \vec{z})$$

for every natural number n; the fact that G' and H' λ-define g and h means that whenever we plug in numerals \overline{m} for \vec{z}, $F(\overline{n + 1}, \overline{m})$ will normalize to the right answer.

But for this, it suffices to find a term F satisfying

$$F(\overline{0}) \equiv G$$
$$F(\overline{n + 1}) \equiv H(\overline{n}, F(\overline{n}))$$

for every natural number n, where

$$G = \lambda\vec{z}. G'(\vec{z})$$
$$H(u, v) = \lambda\vec{z}. H'(u, v(u, \vec{z}), \vec{z}).$$

In other words, with lambda trickery, we can avoid having to worry about the extra parameters \vec{z}—they just get absorbed in the lambda notation.

Before we define the term F, we need a mechanism for handling ordered pairs. This is provided by the next lemma.

Lemma int.1. There is a lambda term D such that for each pair of lambda terms M and N, $D(M, N)(\overline{0}) \rightarrow M$ and $D(M, N)(\overline{1}) \rightarrow N$.

Proof. First, define the lambda term K by

$$K(y) = \lambda x. y.$$

In other words, K is the term $\lambda y. \lambda x. y$. Looking at it differently, for every M, $K(M)$ is a constant function that returns M on any input.

Now define $D(x, y, z)$ by $D(x, y, z) = z(K(y))x$. Then we have

$$D(M, N, \overline{0}) \rightarrow \overline{0}(K(N))M \rightarrow M$$
$$D(M, N, \overline{1}) \rightarrow \overline{1}(K(N))M \rightarrow K(N)M \rightarrow N,$$

as required. \qed
The idea is that \(D(M, N) \) represents the pair \(\langle M, N \rangle \), and if \(P \) is assumed to represent such a pair, \(P(\emptyset) \) and \(P(\top) \) represent the left and right projections, \((P)_0 \) and \((P)_1 \). We will use the latter notations.

Lemma int.2. The \(\lambda \)-definable functions are closed under primitive recursion.

Proof. We need to show that given any terms, \(G \) and \(H \), we can find a term \(F \) such that

\[
\begin{align*}
F(\emptyset) & \equiv G \\
F(\overline{n + 1}) & \equiv H(\pi, F(\pi))
\end{align*}
\]

for every natural number \(n \). The idea is roughly to compute sequences of pairs

\[
(\emptyset, F(\emptyset)), (\top, F(\top)), \ldots,
\]

using numerals as iterators. Notice that the first pair is just \((\emptyset, G) \). Given a pair \((\pi, F(\pi)) \), the next pair, \((\overline{n + 1}, F(\overline{n + 1})) \) is supposed to be equivalent to \((\overline{n + 1}, H(\pi, F(\pi))) \). We will design a lambda term \(T \) that makes this one-step transition.

The details are as follows. Define \(T(u) \) by

\[
T(u) = \langle S((u)_0), H((u)_0, (u)_1) \rangle.
\]

Now it is easy to verify that for any number \(n \),

\[
T((\overline{n}, M)) \rightarrow (\overline{n + 1}, H(\pi, M)).
\]

As suggested above, given \(G \) and \(H \), define \(F(u) \) by

\[
F(u) = (u(T, (\emptyset, G)))_1.
\]

In other words, on input \(\pi \), \(F \) iterates \(T \) \(n \) times on \((\emptyset, G) \), and then returns the second component. To start with, we have

1. \(\emptyset(T, (\emptyset, G)) \equiv (\emptyset, G) \)
2. \(F(\emptyset) \equiv G \)

By induction on \(n \), we can show that for each natural number one has the following:

1. \(\overline{n + 1}(T, (\emptyset, G)) \equiv (\overline{n + 1}, F(\overline{n + 1})) \)
2. \(F(\overline{n + 1}) \equiv H(\pi, F(\pi)) \)

For the second clause, we have

\[
\begin{align*}
F(\overline{n + 1}) & \rightarrow (\overline{n + 1}(T, (\emptyset, G)))_1 \\
& \equiv (T(\pi(T, (\emptyset, G))))_1 \\
& \equiv (T(\pi, F(\pi)))_1 \\
& \equiv ((\overline{n + 1}, H(\pi, F(\pi))))_1 \\
& \equiv H(\pi, F(\pi)).
\end{align*}
\]
Here we have used the induction hypothesis on the second-to-last line. For the first clause, we have

\[
\overline{n + 1}(T, \langle \overline{0}, G \rangle) \equiv T(\pi(T, \langle \overline{0}, G \rangle)) \\
\equiv T(\langle \pi, F(\pi) \rangle) \\
\equiv (\overline{n + 1}, H(\pi, F(\pi))) \\
\equiv (\overline{n + 1}, F(\overline{n + 1})).
\]

Here we have used the second clause in the last line. So we have shown \(F(\overline{0}) \equiv G \) and, for every \(n \), \(F(\overline{n + 1}) \equiv H(\pi, F(\pi)) \), which is exactly what we needed. \(\square \)

Photo Credits

Bibliography