A λ-abstract \(\lambda x. M \) represents a function of one argument, which is quite a limitation when we want to define function accepting multiple arguments. One way to do this would be by extending the λ-calculus to allow the formation of pairs, triples, etc., in which case, say, a three-place function \(\lambda x. M \) would expect its argument to be a triple. However, it is more convenient to do this by Currying.

Let’s consider an example. We’ll pretend for a moment that we have a + operation in the λ-calculus. The addition function is 2-place, i.e., it takes two arguments. But a λ-abstract only gives us functions of one argument: the syntax does not allow expressions like \(\lambda(x, y). (x + y) \). However, we can consider the one-place function \(f_x(y) \) given by \(\lambda y. (x + y) \), which adds \(x \) to its single argument \(y \). Actually, this is not a single function, but a family of different functions “add \(x \),” one for each number \(x \). Now we can define another one-place function \(g \) as \(\lambda x. f_x \). Applied to argument \(x \), \(g(x) \) returns the function \(f_x \)—so its values are other functions. Now if we apply \(g \) to \(x \), and then the result to \(y \) we get: \((g(x))y = f_x(y) = x + y\). In this way, the one-place function \(g \) can do the same job as the two-place addition function. “Currying” simply refers to this trick for turning two-place functions into one place functions (whose values are one-place functions).

Here is an example properly in the syntax of the λ-calculus. How do we represent the function \(f(x, y) = x \)? If we want to define a function that accepts two arguments and returns the first, we can write \(\lambda x. \lambda y. x \), which literally is a function that accepts an argument \(x \) and returns the function \(\lambda y. x \). The function \(\lambda y. x \) accepts another argument \(y \), but drops it, and always returns \(x \). Let’s see what happens when we apply \(\lambda x. \lambda y. x \) to two arguments:

\[
(\lambda x. \lambda y. x)MN \xrightarrow{\beta} (\lambda y. M)N
\]

\[
\xrightarrow{\beta} M
\]

In general, to write a function with parameters \(x_1,\ldots,x_n \) defined by some term \(N \), we can write \(\lambda x_1. \lambda x_2.\ldots\lambda x_n. N \). If we apply \(n \) arguments to it we get:

\[
(\lambda x_1. \lambda x_2.\ldots\lambda x_n. N)M_1\ldots M_n \xrightarrow{\beta} ((\lambda x_2.\ldots\lambda x_n. N)[M_1/x_1])M_2\ldots M_n
\]

\[
\equiv (\lambda x_2.\ldots\lambda x_n. N[M_1/x_1])M_2\ldots M_n
\]

\[
\vdots
\]

\[
\xrightarrow{\beta} P[M_1/x_1]\ldots[M_n/x_n]
\]

The last line literally means substituting \(M_i \) for \(x_i \) in the body of the function definition, which is exactly what we want when applying multiple arguments to a function.