int.1 The λ -Definable Functions are Closed under Composition lam:int:com: **Lemma int.1.** The λ -definable functions are closed under composition. *Proof.* Suppose f is defined by composition from h, g_0, \ldots, g_{k-1} . Assuming h, g_0, \ldots, g_{k-1} are λ -defined by H, G_0, \ldots, G_{k-1} , respectively, we need to find a term F that λ -defines f. But we can simply define F by $$F(x_0,\ldots,x_{l-1})=H(G_0(x_0,\ldots,x_{l-1}),\ldots,G_{k-1}(x_0,\ldots,x_{l-1})).$$ In other words, the language of the lambda calculus is well suited to represent composition. $\hfill\Box$ **Photo Credits** **Bibliography**