sc.1 Lindenbaum’s Lemma

The completeness theorem for intuitionistic logic is proved by assuming $\Gamma \not\vdash \varphi$ and constructing a model $\mathcal{M} \models \Gamma$ and $\mathcal{M} \not\models \varphi$.

In classical logic the relation of derivability can be reduced to the notion of consistency since a formula φ is derivable from a set of formulas if and only if the set together with the negation of φ is inconsistent. This is not possible in intuitionistic logic. In intuitionistic logic, if $\neg \varphi$ is inconsistent, we only get that $\Gamma \vdash \neg \neg \varphi$. Since $\neg \neg \varphi \rightarrow \varphi$ does not hold intuitionistically in general, we cannot conclude that $\Gamma \vdash \varphi$.

Thus, when constructing the model \mathcal{M}, we will need to keep track of the non-derivability of the formula φ and thus we will not be able to use a complete set $\Gamma^* \supseteq \Gamma$ to build the model \mathcal{M}, as in every complete set Γ^*, we have $\Gamma^* \vdash \varphi \lor \neg \varphi$.

Instead of using a complete set Γ^*, we will use the notion of a prime set of formulas:

Definition sc.1. A set of formulas Γ is prime iff

1. Γ is consistent, i.e., $\Gamma \not\vdash \bot$;
2. if $\Gamma \vdash \varphi$ then $\varphi \in \Gamma$; and
3. if $\varphi \lor \psi \in \Gamma$ then $\varphi \in \Gamma$ or $\psi \in \Gamma$.

Lemma sc.2 (Lindenbaum’s Lemma). If $\Gamma \not\vdash \varphi$, there is a $\Gamma^* \supseteq \Gamma$ such that Γ^* is prime and $\Gamma^* \not\vdash \varphi$.

Proof. Let $\psi_1 \lor \chi_1, \psi_2 \lor \chi_2, \ldots$, be an enumeration of all formulas of the form $\psi \lor \chi$. We’ll define an increasing sequence of sets of formulas Γ_n, where each Γ_{n+1} is defined as Γ_n together with one new formula. Γ^* will be the union of all Γ_n. The new formulas are selected so as to ensure that Γ^* is prime and still $\Gamma^* \not\vdash \varphi$. This means that at each step we should find the first disjunction $\psi_i \lor \chi_i$ such that:

1. $\Gamma_n \vdash \psi_i \lor \chi_i$
2. $\psi_i \notin \Gamma_n$ and $\chi_i \notin \Gamma_n$

We add to Γ_n either ψ_i if $\Gamma_n \cup \{\psi_i\} \not\vdash \varphi$, or χ_i otherwise. We’ll have to show that this works. For now, let’s define $i(n)$ as the least i such that (1) and (2) hold.

Define $\Gamma_0 = \Gamma$ and

$$
\Gamma_{n+1} = \begin{cases}
\Gamma_n \cup \{\psi_i(n)\} & \text{if } \Gamma_n \cup \{\psi_i(n)\} \not\vdash \varphi \\
\Gamma_n \cup \{\chi_i(n)\} & \text{otherwise}
\end{cases}
$$

If $i(n)$ is undefined, i.e., whenever $\Gamma_n \vdash \psi \lor \chi$, either $\psi \in \Gamma_n$ or $\chi \in \Gamma_n$, we let $\Gamma_{n+1} = \Gamma_n$. Now let $\Gamma^* = \bigcup_{n=0}^{\infty} \Gamma_n$.
First we show that for all \(n \), \(\Gamma_n \not\vdash \varphi \). We proceed by induction on \(n \). For \(n = 0 \) the claim holds by the hypothesis of the theorem, i.e., \(\Gamma \not\vdash \varphi \). If \(n > 0 \), we have to show that if \(\Gamma_n \not\vdash \varphi \) then \(\Gamma_{n+1} \not\vdash \varphi \). If \(i(n) \) is undefined, \(\Gamma_{n+1} = \Gamma_n \) and there is nothing to prove. So suppose \(i(n) \) is defined. For simplicity, let \(i = i(n) \).

We'll prove the contrapositive of the claim. Suppose \(\Gamma_{n+1} \vdash \varphi \). By construction, \(\Gamma_{n+1} = \Gamma_n \cup \{ \psi \} \) if \(\Gamma_n \cup \{ \psi \} \not\vdash \varphi \), or else \(\Gamma_{n+1} = \Gamma_n \cup \{ \chi \} \). It clearly can't be the first, since then \(\Gamma_{n+1} \not\vdash \varphi \). Hence, \(\Gamma_n \cup \{ \psi \} \vdash \varphi \) and \(\Gamma_{n+1} = \Gamma_n \cup \{ \chi \} \). By definition of \(i(n) \), we have that \(\Gamma_n \vdash \psi \lor \chi \). We have \(\Gamma_n \cup \{ \psi \} \vdash \varphi \). We also have \(\Gamma_{n+1} = \Gamma_n \cup \{ \chi \} \vdash \varphi \). Hence, \(\Gamma_n \vdash \varphi \), which is what we wanted to show.

If \(\Gamma^* \vdash \varphi \), there would be some finite subset \(\Gamma' \subseteq \Gamma^* \) such that \(\Gamma' \vdash \varphi \).

Each \(\theta \in \Gamma' \) must be in \(\Gamma_i \) for some \(i \). Let \(n \) be the largest of these. Since \(\Gamma_i \subseteq \Gamma_n \) if \(i \leq n \), \(\Gamma' \subseteq \Gamma_n \). But then \(\Gamma_n \vdash \varphi \), contrary to our proof above that \(\Gamma_n \not\vdash \varphi \).

Lastly, we show that \(\Gamma^* \) is prime, i.e., satisfies conditions (1), (2), and (3) of Definition sc.1.

First, \(\Gamma^* \not\vdash \varphi \), so \(\Gamma^* \) is consistent, so (1) holds.

We now show that if \(\Gamma^* \vdash \psi \lor \chi \), then either \(\psi \in \Gamma^* \) or \(\chi \in \Gamma^* \). This proves (3), since if \(\psi \lor \chi \in \Gamma^* \) then also \(\Gamma^* \vdash \psi \lor \chi \). So assume \(\Gamma^* \vdash \psi \lor \chi \) but \(\psi \notin \Gamma^* \) and \(\chi \notin \Gamma^* \). Since \(\Gamma^* \vdash \psi \lor \chi \), \(\Gamma_n \vdash \psi \lor \chi \) for some \(n \). \(\psi \lor \chi \) appears on the enumeration of all disjunctions, say, as \(\psi_j \lor \chi_j \). \(\psi_j \lor \chi_j \) satisfies the properties in the definition of \(i(n) \), namely we have \(\Gamma_n \vdash \psi_j \lor \chi_j \), while \(\psi_j \notin \Gamma_n \) and \(\chi_j \notin \Gamma_n \). At each stage, at least one fewer disjunction \(\psi_i \lor \chi_i \) satisfies the conditions (since at each stage we add either \(\psi_i \) or \(\chi_i \)), so at some stage \(m \) we will have \(j = i(m) \). But then either \(\psi \in \Gamma_{m+1} \) or \(\chi \in \Gamma_{m+1} \), contrary to the assumption that \(\psi \notin \Gamma^* \) and \(\chi \notin \Gamma^* \).

Now suppose \(\Gamma^* \vdash \psi \). Then \(\Gamma^* \vdash \psi \lor \psi \). But we’ve just proved that if \(\Gamma^* \vdash \psi \lor \psi \) then \(\psi \in \Gamma^* \). Hence, \(\Gamma^* \) satisfies (2) of Definition sc.1.

\textbf{Problem sc.1.} Show that if \(\Gamma \not\vdash \bot \) then \(\Gamma \) is consistent in classical logic, i.e., there is a valuation making all formulas in \(\Gamma \) true.

\textbf{Photo Credits}

\textbf{Bibliography}