
int.1 Constructive Reasoning

In contrast to extensions of classical logic by modal operators or second-order
quantifiers, intuitionistic logic is “non-classical” in that it restricts classical
logic. Classical logic is non-constructive in various ways. Intuitionistic logic
is intended to capture a more “constructive” kind of reasoning characteristic
of a kind of constructive mathematics. The following examples may serve to
illustrate some of the underlying motivations.

Suppose someone claimed that they had determined a natural number n
with the property that if n is even, the Riemann hypothesis is true, and if n
is odd, the Riemann hypothesis is false. Great news! Whether the Riemann
hypothesis is true or not is one of the big open questions of mathematics, and
they seem to have reduced the problem to one of calculation, that is, to the
determination of whether a specific number is even or not.

What is the magic value of n? They describe it as follows: n is the natural
number that is equal to 2 if the Riemann hypothesis is true, and 3 otherwise.

Angrily, you demand your money back. From a classical point of view, the
description above does in fact determine a unique value of n; but what you
really want is a value of n that is given explicitly.

To take another, perhaps less contrived example, consider the following
question. We know that it is possible to raise an irrational number to a rational

power, and get a rational result. For example,
√
2
2
= 2. What is less clear

is whether or not it is possible to raise an irrational number to an irrational
power, and get a rational result. The following theorem answers this in the
affirmative:

Theorem int.1. There are irrational numbers a and b such that ab is rational.

Proof. Consider
√
2
√
2
. If this is rational, we are done: we can let a = b =

√
2.

Otherwise, it is irrational. Then we have
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2
= 2,

which is rational. So, in this case, let a be
√
2
√
2
, and let b be

√
2.

Does this constitute a valid proof? Most mathematicians feel that it does.
But again, there is something a little bit unsatisfying here: we have proved
the existence of a pair of real numbers with a certain property, without being
able to say which pair of numbers it is. It is possible to prove the same result,
but in such a way that the pair a, b is given in the proof: take a =

√
3 and

b = log3 4. Then

ab =
√
3
log3 4

= 31/2·log3 4 = (3log3 4)1/2 = 41/2 = 2,

since 3log3 x = x.
Intuitionistic logic is designed to capture a kind of reasoning where moves

like the one in the first proof are disallowed. Proving the existence of an x
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satisfying φ(x) means that you have to give a specific x, and a proof that it
satisfies φ, like in the second proof. Proving that φ or ψ holds requires that
you can prove one or the other.

Formally speaking, intuitionistic logic is what you get if you restrict a deriva-
tion system for classical logic in a certain way. From the mathematical point
of view, these are just formal deductive systems, but, as already noted, they
are intended to capture a kind of mathematical reasoning. One can take this
to be the kind of reasoning that is justified on a certain philosophical view of
mathematics (such as Brouwer’s intuitionism); one can take it to be a kind
of mathematical reasoning which is more “concrete” and satisfying (along the
lines of Bishop’s constructivism); and one can argue about whether or not
the formal description captures the informal motivation. But whatever philo-
sophical positions we may hold, we can study intuitionistic logic as a formally
presented logic; and for whatever reasons, many mathematical logicians find it
interesting to do so.
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