The following theorem says that not only is Q undecidable, but, in fact, any theory that does not disagree with Q is undecidable.

Theorem tcp.1. Let T be any theory in the language of arithmetic that is consistent with Q (i.e., $T \cup Q$ is consistent). Then T is undecidable.

Proof. Remember that Q has a finite set of axioms, Q_1, \ldots, Q_8. We can even replace these by a single axiom, $\alpha = Q_1 \land \cdots \land Q_8$.

Suppose T is a decidable theory consistent with Q. Let

$$C = \{ \varphi : T \vdash \alpha \rightarrow \varphi \}.$$

We show that C would be a computable separation of Q and \overline{Q}, a contradiction. First, if φ is in Q, then φ is provable from the axioms of Q; by the deduction theorem, there is a derivation of $\alpha \rightarrow \varphi$ in first-order logic. So φ is in C.

On the other hand, if φ is in \overline{Q}, then there is a proof of $\alpha \rightarrow \neg \varphi$ in first-order logic. If T also proves $\alpha \rightarrow \varphi$, then T proves $\neg \alpha$, in which case $T \cup Q$ is inconsistent. But we are assuming $T \cup Q$ is consistent, so T does not prove $\alpha \rightarrow \varphi$, and so φ is not in C.

We’ve shown that if φ is in Q, then it is in C, and if φ is in \overline{Q}, then it is in \overline{C}. So C is a computable separation, which is the contradiction we were looking for.

This theorem is very powerful. For example, it implies:

Corollary tcp.2. First-order logic for the language of arithmetic (that is, the set $\{ \varphi : \varphi$ is provable in first-order logic$\}$) is undecidable.

Proof. First-order logic is the set of consequences of \emptyset, which is consistent with Q. \hfill \Box

Photo Credits

Bibliography