tcp.1 **Axiomatizable Theories**

A theory T is said to be *axiomatizable* if it has a computable set of axioms A. (Saying that A is a set of axioms for T means $T = \{ \phi : A \vdash \phi \}$.) Any “reasonable” axiomatization of the natural numbers will have this property. In particular, any theory with a finite set of axioms is axiomatizable.

Lemma tcp.1. Suppose T is axiomatizable. Then T is computably enumerable.

Proof. Suppose A is a computable set of axioms for T. To determine if $\varphi \in T$, just search for a derivation of φ from the axioms.

Put slightly differently, φ is in T if and only if there is a finite list of axioms ψ_1, \ldots, ψ_k in A and a derivation of $(\psi_1 \land \cdots \land \psi_k) \rightarrow \varphi$ in first-order logic. But we already know that any set with a definition of the form “there exists …such that …” is c.e., provided the second “…” is computable. \qed

Photo Credits

Bibliography