The Fixed-Point Lemma inp.1

inc:inp:fix: The fixed-point lemma says that for any formula $\psi(x)$, there is a sentence $\varphi_{\text{explanation}}$ such that $\mathbf{T} \vdash \varphi \leftrightarrow \psi(\ulcorner \varphi \urcorner)$, provided \mathbf{T} extends \mathbf{Q} . In the case of the liar sentence, we'd want φ to be equivalent (provably in **T**) to " $\neg \varphi \neg$ is false," i.e., the statement that ${}^{\#}\varphi^{\#}$ is the Gödel number of a false sentence. To understand the idea of the proof, it will be useful to compare it with Quine's informal gloss of φ as, "yields a falsehood when preceded by its own quotation' yields a falsehood when preceded by its own quotation." The operation of taking an expression, and then forming a sentence by preceding this expression by its own quotation may be called *diagonalizing* the expression, and the result its diagonalization. So, the diagonalization of 'yields a falsehood when preceded by its own quotation' is "yields a falsehood when preceded by its own quotation' yields a falsehood when preceded by its own quotation." Now note that Quine's liar sentence is not the diagonalization of 'yields a falsehood' but of 'yields a falsehood when preceded by its own quotation.' So the property being diagonalized to yield the liar sentence itself involves diagonalization!

In the language of arithmetic, we form quotations of a formula with one free variable by computing its Gödel numbers and then substituting the standard numeral for that Gödel number into the free variable. The diagonalization of $\alpha(x)$ is $\alpha(\overline{n})$, where $n = {}^{\#}\alpha(x)^{\#}$. (From now on, let's abbreviate ${}^{\overline{\#}\alpha(x)^{\#}}$ as $\lceil \alpha(x) \rceil$.) So if $\psi(x)$ is "is a falsehood," then "yields a falsehood if preceded by its own quotation," would be "yields a falsehood when applied to the Gödel number of its diagonalization." If we had a symbol diag for the function diag(n)which computes the Gödel number of the diagonalization of the formula with Gödel number n, we could write $\alpha(x)$ as $\psi(diaq(x))$. And Quine's version of the liar sentence would then be the diagonalization of it, i.e., $\alpha(\lceil \alpha(x) \rceil)$ or $\psi(diag(\neg\psi(diag(x))\neg))$. Of course, $\psi(x)$ could now be any other property, and the same construction would work. For the incompleteness theorem, we'll take $\psi(x)$ to be "x is not derivable in **T**." Then $\alpha(x)$ would be "yields a sentence" not derivable in \mathbf{T} when applied to the Gödel number of its diagonalization."

To formalize this in **T**, we have to find a way to formalize diag. The function $\operatorname{diag}(n)$ is computable, in fact, it is primitive recursive: if n is the Gödel number of a formula $\alpha(x)$, diag(n) returns the Gödel number of $\alpha(\lceil \alpha(x) \rceil)$. (Recall, $\lceil \alpha(x) \rceil$ is the standard numeral of the Gödel number of $\alpha(x)$, i.e., $\overline{\#\alpha(x)^{\#}}$). If diag were a function symbol in **T** representing the function diag, we could take φ to be the formula $\psi(diag(\lceil \psi(diag(x)) \rceil)))$. Notice that

$$\operatorname{diag}(^{\#}\psi(\operatorname{diag}(x))^{\#}) = ^{\#}\psi(\operatorname{diag}(^{\ulcorner}\psi(\operatorname{diag}(x))^{\urcorner}))^{\#}$$
$$= ^{\#}\varphi^{\#}.$$

Assuming \mathbf{T} can derive

$$diag(\ulcorner\psi(diag(x))\urcorner) = \ulcorner\varphi\urcorner,$$

it can derive $\psi(diag(\ulcorner\psi(diag(x))\urcorner)) \leftrightarrow \psi(\ulcorner\varphi\urcorner)$. But the left hand side is, by definition, φ .

fixed-point-lemma rev: 016d2bc (2024-06-22) by OLP / CC-BY

Of course, diag will in general not be a function symbol of **T**, and certainly is not one of **Q**. But, since diag is computable, it is *representable* in **Q** by some formula $\theta_{\text{diag}}(x, y)$. So instead of writing $\psi(diag(x))$ we can write $\exists y (\theta_{\text{diag}}(x, y) \land \psi(y))$. Otherwise, the proof sketched above goes through, and in fact, it goes through already in **Q**.

Lemma inp.1. Let $\psi(x)$ be any formula with one free variable x. Then there inc:inp:fix: is a sentence φ such that $\mathbf{Q} \vdash \varphi \leftrightarrow \psi(\ulcorner \varphi \urcorner)$.

Proof. Given $\psi(x)$, let $\alpha(x)$ be the formula $\exists y (\theta_{\text{diag}}(x, y) \land \psi(y))$ and let φ be its diagonalization, i.e., the formula $\alpha(\ulcorner \alpha(x)\urcorner)$.

Since θ_{diag} represents diag, and $\text{diag}(^{\#}\alpha(x)^{\#}) = ^{\#}\varphi^{\#}$, **Q** can derive

$$\theta_{\text{diag}}(\ulcorner \alpha(x) \urcorner, \ulcorner \varphi \urcorner)$$
 (1) inc:inp:fix:

$$\forall y (\theta_{\text{diag}}(\lceil \alpha(x) \rceil, y) \to y = \lceil \varphi \rceil). \tag{2} \quad \begin{array}{c} \underset{\text{repdiag1} \\ \text{inc:inp:fix:} \\ \text{repdiag2} \end{array}$$

Now we show that $\mathbf{Q} \vdash \varphi \leftrightarrow \psi(\ulcorner \varphi \urcorner)$. We argue informally, using just logic and facts derivable in \mathbf{Q} .

First, suppose φ , i.e., $\alpha(\lceil \alpha(x) \rceil)$. Going back to the definition of $\alpha(x)$, we see that $\alpha(\lceil \alpha(x) \rceil)$ just is

$$\exists y \, (\theta_{\text{diag}}(\ulcorner \alpha(x) \urcorner, y) \land \psi(y)).$$

Consider such a y. Since $\theta_{\text{diag}}(\lceil \alpha(x) \rceil, y)$, by eq. (2), $y = \lceil \varphi \rceil$. So, from $\psi(y)$ we have $\psi(\lceil \varphi \rceil)$.

Now suppose $\psi(\ulcorner \varphi \urcorner)$. By eq. (1), we have

$$\theta_{\text{diag}}(\ulcorner \alpha(x)\urcorner, \ulcorner \varphi \urcorner) \land \psi(\ulcorner \varphi \urcorner).$$

It follows that

$$\exists y \, (\theta_{\text{diag}}(\ulcorner \alpha(x)\urcorner, y) \land \psi(y)).$$

But that's just $\alpha(\lceil \alpha(x) \rceil)$, i.e., φ .

digression

You should compare this to the proof of the fixed-point lemma in computability theory. The difference is that here we want to define a *statement* in terms of itself, whereas there we wanted to define a *function* in terms of itself; this difference aside, it is really the same idea.

Problem inp.1. A formula $\varphi(x)$ is a *truth definition* if $\mathbf{Q} \vdash \psi \leftrightarrow \varphi(\ulcorner \psi \urcorner)$ for all sentences ψ . Show that no formula is a truth definition by using the fixed-point lemma.

Photo Credits

Bibliography