
Chapter udf

The Sequent Calculus

This chapter presents Gentzen’s standard sequent calculus LK for clas-
sical first-order logic. It could use more examples and exercises. To include
or exclude material relevant to the sequent calculus as a proof system, use
the “prfLK” tag.

seq.1 Rules and Derivations

fol:seq:rul:
sec

For the following, let Γ,∆,Π,Λ represent finite sequences of sentences.

Definition seq.1 (Sequent). A sequent is an expression of the form

Γ ⇒ ∆

where Γ and ∆ are finite (possibly empty) sequences of sentences of the lan-
guage L. Γ is called the antecedent, while ∆ is the succedent.

explanationThe intuitive idea behind a sequent is: if all of the sentences in the an-
tecedent hold, then at least one of the sentences in the succedent holds. That
is, if Γ = ⟨φ1, . . . , φm⟩ and ∆ = ⟨ψ1, . . . , ψn⟩, then Γ ⇒ ∆ holds iff

(φ1 ∧ · · · ∧ φm)→ (ψ1 ∨ · · · ∨ ψn)

holds. There are two special cases: where Γ is empty and when ∆ is empty.
When Γ is empty, i.e., m = 0, ⇒ ∆ holds iff ψ1 ∨ · · · ∨ ψn holds. When ∆
is empty, i.e., n = 0, Γ ⇒ holds iff ¬(φ1 ∧ · · · ∧ φm) does. We say a sequent
is valid iff the corresponding sentence is valid.

If Γ is a sequence of sentences, we write Γ, φ for the result of appending φ
to the right end of Γ (and φ, Γ for the result of appending φ to the left end
of Γ ). If ∆ is a sequence of sentences also, then Γ,∆ is the concatenation of
the two sequences.

1



Definition seq.2 (Initial Sequent). An initial sequent is a sequent of one
of the following forms:

1. φ⇒ φ

2. ⇒ ⊤

3. ⊥ ⇒

for any sentence φ in the language.

Derivations in the sequent calculus are certain trees of sequents, where the
topmost sequents are initial sequents, and if a sequent stands below one or two
other sequents, it must follow correctly by a rule of inference. The rules for LK
are divided into two main types: logical rules and structural rules. The logical
rules are named for the main operator of the sentence containing φ and/or ψ in
the lower sequent. Each one comes in two versions, one for inferring a sequent
with the sentence containing the logical operator on the left, and one with the
sentence on the right.

seq.2 Propositional Rules

fol:seq:prl:
sec

Rules for ¬

Γ ⇒ ∆,φ
¬L¬φ, Γ ⇒ ∆

φ,Γ ⇒ ∆
¬R

Γ ⇒ ∆,¬φ

Rules for ∧

φ, Γ ⇒ ∆
∧L

φ ∧ ψ, Γ ⇒ ∆

ψ,Γ ⇒ ∆
∧L

φ ∧ ψ, Γ ⇒ ∆

Γ ⇒ ∆,φ Γ ⇒ ∆,ψ
∧R

Γ ⇒ ∆,φ ∧ ψ

Rules for ∨

φ, Γ ⇒ ∆ ψ,Γ ⇒ ∆
∨L

φ ∨ ψ, Γ ⇒ ∆

Γ ⇒ ∆,φ
∨R

Γ ⇒ ∆,φ ∨ ψ
Γ ⇒ ∆,ψ

∨R
Γ ⇒ ∆,φ ∨ ψ

2 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Rules for →

Γ ⇒ ∆,φ ψ,Π ⇒ Λ
→L

φ→ ψ, Γ,Π ⇒ ∆,Λ

φ, Γ ⇒ ∆,ψ
→R

Γ ⇒ ∆,φ→ ψ

seq.3 Quantifier Rules

fol:seq:qrl:
sec

Rules for ∀

φ(t), Γ ⇒ ∆
∀L∀xφ(x), Γ ⇒ ∆

Γ ⇒ ∆,φ(a)
∀R

Γ ⇒ ∆,∀xφ(x)

In ∀L, t is a closed term (i.e., one without variables). In ∀R, a is a constant
symbol which must not occur anywhere in the lower sequent of the ∀R rule.
We call a the eigenvariable of the ∀R inference.1

Rules for ∃

φ(a), Γ ⇒ ∆
∃L∃xφ(x), Γ ⇒ ∆

Γ ⇒ ∆,φ(t)
∃R

Γ ⇒ ∆,∃xφ(x)

Again, t is a closed term, and a is a constant symbol which does not occur
in the lower sequent of the ∃L rule. We call a the eigenvariable of the ∃L
inference.

The condition that an eigenvariable not occur in the lower sequent of the
∀R or ∃L inference is called the eigenvariable condition.

explanationRecall the convention that when φ is a formula with the variable x free, we
indicate this by writing φ(x). In the same context, φ(t) then is short for φ[t/x].
So we could also write the ∃R rule as:

Γ ⇒ ∆,φ[t/x]
∃R

Γ ⇒ ∆, ∃xφ

Note that t may already occur in φ, e.g., φ might be P (t, x). Thus, inferring
Γ ⇒ ∆,∃xP (t, x) from Γ ⇒ ∆,P (t, t) is a correct application of ∃R—you
may “replace” one or more, and not necessarily all, occurrences of t in the
premise by the bound variable x. However, the eigenvariable conditions in ∀R

1We use the term “eigenvariable” even though a in the above rule is a constant symbol.
This has historical reasons.

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


and ∃L require that the constant symbol a does not occur in φ. So, you cannot
correctly infer Γ ⇒ ∆, ∀xP (a, x) from Γ ⇒ ∆,P (a, a) using ∀R.

explanation In ∃R and ∀L there are no restrictions on the term t. On the other hand,
in the ∃L and ∀R rules, the eigenvariable condition requires that the constant
symbol a does not occur anywhere outside of φ(a) in the upper sequent. It is
necessary to ensure that the system is sound, i.e., only derives sequents that
are valid. Without this condition, the following would be allowed:

φ(a) ⇒ φ(a)
*∃L∃xφ(x) ⇒ φ(a)

∀R∃xφ(x) ⇒ ∀xφ(x)

φ(a) ⇒ φ(a)
*∀R

φ(a) ⇒ ∀xφ(x)
∃L∃xφ(x) ⇒ ∀xφ(x)

However, ∃xφ(x) ⇒ ∀xφ(x) is not valid.

seq.4 Structural Rules

fol:seq:srl:
sec

We also need a few rules that allow us to rearrange sentences in the left and
right side of a sequent. Since the logical rules require that the sentences in
the premise which the rule acts upon stand either to the far left or to the far
right, we need an “exchange” rule that allows us to move sentences to the right
position. It’s also important sometimes to be able to combine two identical
sentences into one, and to add a sentence on either side.

Weakening

Γ ⇒ ∆
WL

φ, Γ ⇒ ∆
Γ ⇒ ∆

WR
Γ ⇒ ∆,φ

Contraction

φ,φ, Γ ⇒ ∆
CL

φ, Γ ⇒ ∆

Γ ⇒ ∆,φ, φ
CR

Γ ⇒ ∆,φ

Exchange

Γ, φ, ψ,Π ⇒ ∆
XL

Γ, ψ, φ,Π ⇒ ∆

Γ ⇒ ∆,φ, ψ, Λ
XR

Γ ⇒ ∆,ψ, φ, Λ

A series of weakening, contraction, and exchange inferences will often be indi-
cated by double inference lines.

4 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


The following rule, called “cut,” is not strictly speaking necessary, but
makes it a lot easier to reuse and combine derivations.

Γ ⇒ ∆,φ φ,Π ⇒ Λ
Cut

Γ,Π ⇒ ∆,Λ

seq.5 Derivations

fol:seq:der:
sec

explanationWe’ve said what an initial sequent looks like, and we’ve given the rules of
inference. Derivations in the sequent calculus are inductively generated from
these: each derivation either is an initial sequent on its own, or consists of one
or two derivations followed by an inference.

Definition seq.3 (LK derivation). An LK-derivation of a sequent S is a
finite tree of sequents satisfying the following conditions:

1. The topmost sequents of the tree are initial sequents.

2. The bottommost sequent of the tree is S.

3. Every sequent in the tree except S is a premise of a correct application
of an inference rule whose conclusion stands directly below that sequent
in the tree.

We then say that S is the end-sequent of the derivation and that S is derivable
in LK (or LK-derivable).

Example seq.4. Every initial sequent, e.g., χ ⇒ χ is a derivation. We can
obtain a new derivation from this by applying, say, the WL rule,

Γ ⇒ ∆
WL

φ, Γ ⇒ ∆

The rule, however, is meant to be general: we can replace the φ in the rule
with any sentence, e.g., also with θ. If the premise matches our initial sequent
χ ⇒ χ, that means that both Γ and ∆ are just χ, and the conclusion would
then be θ, χ⇒ χ. So, the following is a derivation:

χ ⇒ χ
WL

θ, χ ⇒ χ

We can now apply another rule, say XL, which allows us to switch two sentences
on the left. So, the following is also a correct derivation:

χ ⇒ χ
WL

θ, χ ⇒ χ
XL

χ, θ ⇒ χ

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


In this application of the rule, which was given as

Γ, φ, ψ,Π ⇒ ∆
XL

Γ, ψ, φ,Π ⇒ ∆,

both Γ and Π were empty, ∆ is χ, and the roles of φ and ψ are played by θ
and χ, respectively. In much the same way, we also see that

θ ⇒ θ
WL

χ, θ ⇒ θ

is a derivation. Now we can take these two derivations, and combine them
using ∧R. That rule was

Γ ⇒ ∆,φ Γ ⇒ ∆,ψ
∧R

Γ ⇒ ∆,φ ∧ ψ

In our case, the premises must match the last sequents of the derivations ending
in the premises. That means that Γ is χ, θ, ∆ is empty, φ is χ and ψ is θ. So
the conclusion, if the inference should be correct, is χ, θ ⇒ χ ∧ θ.

χ ⇒ χ
WL

θ, χ ⇒ χ
XL

χ, θ ⇒ χ
θ ⇒ θ

WL
χ, θ ⇒ θ

∧R
χ, θ ⇒ χ ∧ θ

Of course, we can also reverse the premises, then φ would be θ and ψ would
be χ.

θ ⇒ θ
WL

χ, θ ⇒ θ

χ ⇒ χ
WL

θ, χ ⇒ χ
XL

χ, θ ⇒ χ
∧R

χ, θ ⇒ θ ∧ χ

seq.6 Examples of Derivations

fol:seq:pro:
sec

Example seq.5. Give an LK-derivation for the sequent φ ∧ ψ ⇒ φ.
We begin by writing the desired end-sequent at the bottom of the derivation.

φ ∧ ψ ⇒ φ

Next, we need to figure out what kind of inference could have a lower sequent
of this form. This could be a structural rule, but it is a good idea to start by
looking for a logical rule. The only logical connective occurring in the lower
sequent is ∧, so we’re looking for an ∧ rule, and since the ∧ symbol occurs in
the antecedent, we’re looking at the ∧L rule.

∧L
φ ∧ ψ ⇒ φ

6 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


There are two options for what could have been the upper sequent of the ∧L
inference: we could have an upper sequent of φ ⇒ φ, or of ψ ⇒ φ. Clearly,
φ ⇒ φ is an initial sequent (which is a good thing), while ψ ⇒ φ is not
derivable in general. We fill in the upper sequent:

φ ⇒ φ
∧L

φ ∧ ψ ⇒ φ

We now have a correct LK-derivation of the sequent φ ∧ ψ ⇒ φ.

Example seq.6. Give an LK-derivation for the sequent ¬φ ∨ ψ ⇒ φ→ ψ.
Begin by writing the desired end-sequent at the bottom of the derivation.

¬φ ∨ ψ ⇒ φ→ ψ

To find a logical rule that could give us this end-sequent, we look at the logical
connectives in the end-sequent: ¬, ∨, and →. We only care at the moment
about ∨ and→ because they are main operators of sentences in the end-sequent,
while ¬ is inside the scope of another connective, so we will take care of it later.
Our options for logical rules for the final inference are therefore the ∨L rule
and the →R rule. We could pick either rule, really, but let’s pick the →R rule
(if for no reason other than it allows us to put off splitting into two branches).
According to the form of →R inferences which can yield the lower sequent, this
must look like:

φ,¬φ ∨ ψ ⇒ ψ
→R¬φ ∨ ψ ⇒ φ→ ψ

If we move ¬φ ∨ ψ to the outside of the antecedent, we can apply the ∨L
rule. According to the schema, this must split into two upper sequents as
follows:

¬φ,φ ⇒ ψ ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

Remember that we are trying to wind our way up to initial sequents; we seem
to be pretty close! The right branch is just one weakening and one exchange
away from an initial sequent and then it is done:

¬φ,φ ⇒ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
XL

ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Now looking at the left branch, the only logical connective in any sentence
is the ¬ symbol in the antecedent sentences, so we’re looking at an instance of
the ¬L rule.

φ ⇒ ψ,φ
¬L¬φ,φ ⇒ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
XL

ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

Similarly to how we finished off the right branch, we are just one weakening
and one exchange away from finishing off this left branch as well.

φ ⇒ φ
WR

φ ⇒ φ,ψ
XR

φ ⇒ ψ,φ
¬L¬φ,φ ⇒ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
XL

ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

Example seq.7. Give an LK-derivation of the sequent ¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)
Using the techniques from above, we start by writing the desired end-

sequent at the bottom.

¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

The available main connectives of sentences in the end-sequent are the ∨ symbol
and the ¬ symbol. It would work to apply either the ∨L or the ¬R rule here,
but we start with the ¬R rule because it avoids splitting up into two branches
for a moment:

φ ∧ ψ,¬φ ∨ ¬ψ ⇒
¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

Now we have a choice of whether to look at the ∧L or the ∨L rule. Let’s see
what happens when we apply the ∧L rule: we have a choice to start with either
the sequent φ,¬φ∨ψ ⇒ or the sequent ψ,¬φ∨ψ ⇒ . Since the derivation
is symmetric with regards to φ and ψ, let’s go with the former:

φ,¬φ ∨ ¬ψ ⇒
∧L

φ ∧ ψ,¬φ ∨ ¬ψ ⇒
¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

Continuing to fill in the derivation, we see that we run into a problem:

8 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


φ ⇒ φ
¬L¬φ,φ ⇒

?
φ ⇒ ψ

¬L¬ψ,φ ⇒
∨L¬φ ∨ ¬ψ,φ ⇒

XL
φ,¬φ ∨ ¬ψ ⇒

∧L
φ ∧ ψ,¬φ ∨ ¬ψ ⇒

¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

The top of the right branch cannot be reduced any further, and it cannot be
brought by way of structural inferences to an initial sequent, so this is not the
right path to take. So clearly, it was a mistake to apply the ∧L rule above.
Going back to what we had before and carrying out the ∨L rule instead, we
get

¬φ,φ ∧ ψ ⇒ ¬ψ,φ ∧ ψ ⇒
∨L¬φ ∨ ¬ψ,φ ∧ ψ ⇒

XL
φ ∧ ψ,¬φ ∨ ¬ψ ⇒

¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

Completing each branch as we’ve done before, we get

φ ⇒ φ
∧L

φ ∧ ψ ⇒ φ
¬L¬φ,φ ∧ ψ ⇒

ψ ⇒ ψ
∧L

φ ∧ ψ ⇒ ψ
¬L¬ψ,φ ∧ ψ ⇒

∨L¬φ ∨ ¬ψ,φ ∧ ψ ⇒
XL

φ ∧ ψ,¬φ ∨ ¬ψ ⇒
¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

(We could have carried out the ∧ rules lower than the ¬ rules in these steps
and still obtained a correct derivation).

Example seq.8. So far we haven’t used the contraction rule, but it is some-
times required. Here’s an example where that happens. Suppose we want to
prove ⇒ φ ∨ ¬φ. Applying ∨R backwards would give us one of these two
derivations:

⇒ φ
∨R⇒ φ ∨ ¬φ

φ ⇒
¬R⇒ ¬φ

∨R⇒ φ ∨ ¬φ

Neither of these of course ends in an initial sequent. The trick is to realize
that the contraction rule allows us to combine two copies of a sentence into
one—and when we’re searching for a proof, i.e., going from bottom to top, we
can keep a copy of φ ∨ ¬φ in the premise, e.g.,

⇒ φ ∨ ¬φ,φ
∨R⇒ φ ∨ ¬φ,φ ∨ ¬φ
CR⇒ φ ∨ ¬φ

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Now we can apply ∨R a second time, and also get ¬φ, which leads to a complete
derivation.

φ ⇒ φ
¬R⇒ φ,¬φ

∨R⇒ φ,φ ∨ ¬φ
XR⇒ φ ∨ ¬φ,φ

∨R⇒ φ ∨ ¬φ,φ ∨ ¬φ
CR⇒ φ ∨ ¬φ

Problem seq.1. Give derivations of the following sequents:

1. φ ∧ (ψ ∧ χ) ⇒ (φ ∧ ψ) ∧ χ.

2. φ ∨ (ψ ∨ χ) ⇒ (φ ∨ ψ) ∨ χ.

3. φ→ (ψ→ χ) ⇒ ψ→ (φ→ χ).

4. φ⇒ ¬¬φ.

Problem seq.2. Give derivations of the following sequents:

1. (φ ∨ ψ)→ χ⇒ φ→ χ.

2. (φ→ χ) ∧ (ψ→ χ) ⇒ (φ ∨ ψ)→ χ.

3. ⇒ ¬(φ ∧ ¬φ).

4. ψ→ φ⇒ ¬φ→¬ψ.

5. ⇒ (φ→¬φ)→¬φ.

6. ⇒ ¬(φ→ ψ)→¬ψ.

7. φ→ χ⇒ ¬(φ ∧ ¬χ).

8. φ ∧ ¬χ⇒ ¬(φ→ χ).

9. φ ∨ ψ,¬ψ ⇒ φ.

10. ¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ).

11. ⇒ (¬φ ∧ ¬ψ)→¬(φ ∨ ψ).

12. ⇒ ¬(φ ∨ ψ)→ (¬φ ∧ ¬ψ).

Problem seq.3. Give derivations of the following sequents:

1. ¬(φ→ ψ) ⇒ φ.

2. ¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ.

3. φ→ ψ ⇒ ¬φ ∨ ψ.

10 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


4. ⇒ ¬¬φ→ φ.

5. φ→ ψ,¬φ→ ψ ⇒ ψ.

6. (φ ∧ ψ)→ χ⇒ (φ→ χ) ∨ (ψ→ χ).

7. (φ→ ψ)→ φ⇒ φ.

8. ⇒ (φ→ ψ) ∨ (ψ→ χ).

(These all require the CR rule.)

seq.7 Derivations with Quantifiers

fol:seq:prq:
sec

Example seq.9. Give an LK-derivation of the sequent ∃x¬φ(x) ⇒ ¬∀xφ(x).
When dealing with quantifiers, we have to make sure not to violate the

eigenvariable condition, and sometimes this requires us to play around with
the order of carrying out certain inferences. In general, it helps to try and
take care of rules subject to the eigenvariable condition first (they will be lower
down in the finished proof). Also, it is a good idea to try and look ahead and
try to guess what the initial sequent might look like. In our case, it will have to
be something like φ(a) ⇒ φ(a). That means that when we are “reversing” the
quantifier rules, we will have to pick the same term—what we will call a—for
both the ∀ and the ∃ rule. If we picked different terms for each rule, we would
end up with something like φ(a) ⇒ φ(b), which, of course, is not derivable.

Starting as usual, we write

∃x¬φ(x) ⇒ ¬∀xφ(x)

We could either carry out the ∃L rule or the ¬R rule. Since the ∃L rule is
subject to the eigenvariable condition, it’s a good idea to take care of it sooner
rather than later, so we’ll do that one first.

¬φ(a) ⇒ ¬∀xφ(x)
∃L∃x¬φ(x) ⇒ ¬∀xφ(x)

Applying the ¬L and ¬R rules backwards, we get

∀xφ(x) ⇒ φ(a)
¬L¬φ(a),∀xφ(x) ⇒

XL∀xφ(x),¬φ(a) ⇒
¬R¬φ(a) ⇒ ¬∀xφ(x)
∃L∃x¬φ(x) ⇒ ¬∀xφ(x)

At this point, our only option is to carry out the ∀L rule. Since this rule is not
subject to the eigenvariable restriction, we’re in the clear. Remember, we want
to try and obtain an initial sequent (of the form φ(a) ⇒ φ(a)), so we should
choose a as our argument for φ when we apply the rule.

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


φ(a) ⇒ φ(a)
∀L∀xφ(x) ⇒ φ(a)
¬L¬φ(a),∀xφ(x) ⇒

XL∀xφ(x),¬φ(a) ⇒
¬R¬φ(a) ⇒ ¬∀xφ(x)
∃L∃x¬φ(x) ⇒ ¬∀xφ(x)

It is important, especially when dealing with quantifiers, to double check at
this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was ∃L, and
the eigenvariable a does not occur in its lower sequent (the end-sequent), this
is a correct derivation.

Problem seq.4. Give derivations of the following sequents:

1. ⇒ (∀xφ(x) ∧ ∀y ψ(y))→∀z (φ(z) ∧ ψ(z)).

2. ⇒ (∃xφ(x) ∨ ∃y ψ(y))→∃z (φ(z) ∨ ψ(z)).

3. ∀x (φ(x)→ ψ) ⇒ ∃y φ(y)→ ψ.

4. ∀x¬φ(x) ⇒ ¬∃xφ(x).

5. ⇒ ¬∃xφ(x)→∀x¬φ(x).

6. ⇒ ¬∃x ∀y ((φ(x, y)→¬φ(y, y)) ∧ (¬φ(y, y)→ φ(x, y))).

Problem seq.5. Give derivations of the following sequents:

1. ⇒ ¬∀xφ(x)→∃x¬φ(x).

2. (∀xφ(x)→ ψ) ⇒ ∃y (φ(y)→ ψ).

3. ⇒ ∃x (φ(x)→∀y φ(y)).

(These all require the CR rule.)

This section collects the definitions of the provability relation and con-
sistency for natural deduction.

seq.8 Proof-Theoretic Notions

fol:seq:ptn:
sec

explanation Just as we’ve defined a number of important semantic notions (validity, en-
tailment, satisfiabilty), we now define corresponding proof-theoretic notions.
These are not defined by appeal to satisfaction of sentences in structures, but
by appeal to the derivability or non-derivability of certain sequents. It was an
important discovery that these notions coincide. That they do is the content
of the soundness and completeness theorem.

12 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Definition seq.10 (Theorems). A sentence φ is a theorem if there is a deriva-
tion in LK of the sequent ⇒ φ. We write ⊢ φ if φ is a theorem and ⊬ φ if
it is not.

Definition seq.11 (Derivability). A sentence φ is derivable from a set of
sentences Γ , Γ ⊢ φ, iff there is a finite subset Γ0 ⊆ Γ and a sequence Γ ′

0 of the
sentences in Γ0 such that LK derives Γ ′

0 ⇒ φ. If φ is not derivable from Γ we
write Γ ⊬ φ.

Because of the contraction, weakening, and exchange rules, the order and
number of sentences in Γ ′

0 does not matter: if a sequent Γ ′
0 ⇒ φ is derivable,

then so is Γ ′′
0 ⇒ φ for any Γ ′′

0 that contains the same sentences as Γ ′
0. For

instance, if Γ0 = {ψ, χ} then both Γ ′
0 = ⟨ψ,ψ, χ⟩ and Γ ′′

0 = ⟨χ, χ, ψ⟩ are
sequences containing just the sentences in Γ0. If a sequent containing one is
derivable, so is the other, e.g.:

ψ,ψ, χ ⇒ φ
CL

ψ, χ ⇒ φ
XL

χ, ψ ⇒ φ
WL

χ, χ, ψ ⇒ φ

From now on we’ll say that if Γ0 is a finite set of sentences then Γ0 ⇒ φ is
any sequent where the antecedent is a sequence of sentences in Γ0 and tacitly
include contractions, exchanges, and weakenings if necessary.

Definition seq.12 (Consistency). A set of sentences Γ is inconsistent iff
there is a finite subset Γ0 ⊆ Γ such that LK derives Γ0 ⇒ . If Γ is not
inconsistent, i.e., if for every finite Γ0 ⊆ Γ , LK does not derive Γ0 ⇒ , we
say it is consistent.

Proposition seq.13 (Reflexivity).fol:seq:ptn:

prop:reflexivity

If φ ∈ Γ , then Γ ⊢ φ.

Proof. The initial sequent φ⇒ φ is derivable, and {φ} ⊆ Γ .

Proposition seq.14 (Monotonicity).fol:seq:ptn:

prop:monotonicity

If Γ ⊆ ∆ and Γ ⊢ φ, then ∆ ⊢ φ.

Proof. Suppose Γ ⊢ φ, i.e., there is a finite Γ0 ⊆ Γ such that Γ0 ⇒ φ is
derivable. Since Γ ⊆ ∆, then Γ0 is also a finite subset of ∆. The derivation of
Γ0 ⇒ φ thus also shows ∆ ⊢ φ.

Proposition seq.15 (Transitivity).fol:seq:ptn:

prop:transitivity

If Γ ⊢ φ and {φ}∪∆ ⊢ ψ, then Γ∪∆ ⊢
ψ.

Proof. If Γ ⊢ φ, there is a finite Γ0 ⊆ Γ and a derivation π0 of Γ0 ⇒ φ. If
{φ} ∪∆ ⊢ ψ, then for some finite subset ∆0 ⊆ ∆, there is a derivation π1 of
φ,∆0 ⇒ ψ. Consider the following derivation:

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


π0

Γ0 ⇒ φ

π1

φ,∆0 ⇒ ψ
Cut

Γ0, ∆0 ⇒ ψ

Since Γ0 ∪∆0 ⊆ Γ ∪∆, this shows Γ ∪∆ ⊢ ψ.

Note that this means that in particular if Γ ⊢ φ and φ ⊢ ψ, then Γ ⊢ ψ. It
follows also that if φ1, . . . , φn ⊢ ψ and Γ ⊢ φi for each i, then Γ ⊢ ψ.

Proposition seq.16. fol:seq:ptn:

prop:incons

Γ is inconsistent iff Γ ⊢ φ for every sentence φ.

Proof. Exercise.

Problem seq.6. Prove Proposition seq.16

Proposition seq.17 (Compactness). fol:seq:ptn:

prop:proves-compact

1. If Γ ⊢ φ then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ φ.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ⊢ φ, then there is a finite subset Γ0 ⊆ Γ such that the sequent
Γ0 ⇒ φ has a derivation. Consequently, Γ0 ⊢ φ.

2. If Γ is inconsistent, there is a finite subset Γ0 ⊆ Γ such that LK derives
Γ0 ⇒ . But then Γ0 is a finite subset of Γ that is inconsistent.

seq.9 Derivability and Consistency

fol:seq:prv:
sec

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition seq.18. fol:seq:prv:

prop:provability-contr

If Γ ⊢ φ and Γ ∪ {φ} is inconsistent, then Γ is incon-
sistent.

Proof. There are finite Γ0 and Γ1 ⊆ Γ such that LK derives Γ0 ⇒ φ and
φ, Γ1 ⇒ . Let the LK-derivation of Γ0 ⇒ φ be π0 and the LK-derivation of
Γ1, φ⇒ be π1. We can then derive

π0

Γ0 ⇒ φ

π1

φ, Γ1 ⇒
Cut

Γ0, Γ1 ⇒

Since Γ0 ⊆ Γ and Γ1 ⊆ Γ , Γ0 ∪ Γ1 ⊆ Γ , hence Γ is inconsistent.

14 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Proposition seq.19.fol:seq:prv:

prop:prov-incons

Γ ⊢ φ iff Γ ∪ {¬φ} is inconsistent.

Proof. First suppose Γ ⊢ φ, i.e., there is a derivation π0 of Γ ⇒ φ. By adding
a ¬L rule, we obtain a derivation of ¬φ, Γ ⇒ , i.e., Γ ∪ {¬φ} is inconsistent.

If Γ ∪ {¬φ} is inconsistent, there is a derivation π1 of ¬φ, Γ ⇒ . The
following is a derivation of Γ ⇒ φ:

φ ⇒ φ
¬R⇒ φ,¬φ

π1

¬φ, Γ ⇒
Cut

Γ ⇒ φ

Problem seq.7. Prove that Γ ⊢ ¬φ iff Γ ∪ {φ} is inconsistent.

Proposition seq.20.fol:seq:prv:

prop:explicit-inc

If Γ ⊢ φ and ¬φ ∈ Γ , then Γ is inconsistent.

Proof. Suppose Γ ⊢ φ and ¬φ ∈ Γ . Then there is a derivation π of a sequent
Γ0 ⇒ φ. The sequent ¬φ, Γ0 ⇒ is also derivable:

π

Γ0 ⇒ φ

φ ⇒ φ
¬L¬φ,φ ⇒

XLφ,¬φ ⇒
Cut

Γ0,¬φ ⇒

Since ¬φ ∈ Γ and Γ0 ⊆ Γ , this shows that Γ is inconsistent.

Proposition seq.21.fol:seq:prv:

prop:provability-exhaustive

If Γ ∪{φ} and Γ ∪{¬φ} are both inconsistent, then Γ
is inconsistent.

Proof. There are finite sets Γ0 ⊆ Γ and Γ1 ⊆ Γ and LK-derivations π0 and π1
of φ, Γ0 ⇒ and ¬φ, Γ1 ⇒ , respectively. We can then derive

π0

φ, Γ0 ⇒
¬R

Γ0 ⇒ ¬φ

π1

¬φ, Γ1 ⇒
Cut

Γ0, Γ1 ⇒

Since Γ0 ⊆ Γ and Γ1 ⊆ Γ , Γ0 ∪ Γ1 ⊆ Γ . Hence Γ is inconsistent.

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


seq.10 Derivability and the Propositional Connectives

fol:seq:ppr:
sec

explanation We establish that the derivability relation ⊢ of the sequent calculus is strong
enough to establish some basic facts involving the propositional connectives,
such as that φ ∧ ψ ⊢ φ and φ,φ→ ψ ⊢ ψ (modus ponens). These facts are
needed for the proof of the completeness theorem.

Proposition seq.22. fol:seq:ppr:

prop:provability-land

1. fol:seq:ppr:

prop:provability-land-left

Both φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ.

2. fol:seq:ppr:

prop:provability-land-right

φ,ψ ⊢ φ ∧ ψ.

Proof. 1. Both sequents φ ∧ ψ ⇒ φ and φ ∧ ψ ⇒ ψ are derivable:

φ ⇒ φ
∧L

φ ∧ ψ ⇒ φ

ψ ⇒ ψ
∧L

φ ∧ ψ ⇒ ψ

2. Here is a derivation of the sequent φ,ψ ⇒ φ ∧ ψ:

φ ⇒ φ ψ ⇒ ψ
∧R

φ,ψ ⇒ φ ∧ ψ

Proposition seq.23. fol:seq:ppr:

prop:provability-lor

1. φ ∨ ψ,¬φ,¬ψ is inconsistent.

2. Both φ ⊢ φ ∨ ψ and ψ ⊢ φ ∨ ψ.

Proof. 1. We give a derivation of the sequent φ ∨ ψ,¬φ,¬ψ ⇒:

φ ⇒ φ
¬L¬φ,φ ⇒

φ,¬φ,¬ψ ⇒

ψ ⇒ ψ
¬L¬ψ,ψ ⇒

ψ,¬φ,¬ψ ⇒
∨L

φ ∨ ψ,¬φ,¬ψ ⇒

(Recall that double inference lines indicate several weakening, contrac-
tion, and exchange inferences.)

2. Both sequents φ⇒ φ ∨ ψ and ψ ⇒ φ ∨ ψ have derivations:

φ ⇒ φ
∨R

φ ⇒ φ ∨ ψ
ψ ⇒ ψ

∨R
ψ ⇒ φ ∨ ψ

Proposition seq.24. fol:seq:ppr:

prop:provability-lif

1. fol:seq:ppr:

prop:provability-lif-left

φ,φ→ ψ ⊢ ψ.

16 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


2.fol:seq:ppr:

prop:provability-lif-right

Both ¬φ ⊢ φ→ ψ and ψ ⊢ φ→ ψ.

Proof. 1. The sequent φ→ ψ,φ⇒ ψ is derivable:

φ ⇒ φ ψ ⇒ ψ
→L

φ→ ψ,φ ⇒ ψ

2. Both sequents ¬φ⇒ φ→ ψ and ψ ⇒ φ→ ψ are derivable:

φ ⇒ φ
¬L¬φ,φ ⇒

XLφ,¬φ ⇒
WR

φ,¬φ ⇒ ψ
→R¬φ ⇒ φ→ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
→R

ψ ⇒ φ→ ψ

seq.11 Derivability and the Quantifiers

fol:seq:qpr:
sec

explanationThe completeness theorem also requires that the sequent calculus rules rules
yield the facts about ⊢ established in this section.

Theorem seq.25.fol:seq:qpr:

thm:strong-generalization

If c is a constant not occurring in Γ or φ(x) and Γ ⊢ φ(c),
then Γ ⊢ ∀xφ(x).

Proof. Let π0 be an LK-derivation of Γ0 ⇒ φ(c) for some finite Γ0 ⊆ Γ . By
adding a ∀R inference, we obtain a derivation of Γ0 ⇒ ∀xφ(x), since c does
not occur in Γ or φ(x) and thus the eigenvariable condition is satisfied.

Proposition seq.26.fol:seq:qpr:

prop:provability-quantifiers

1. φ(t) ⊢ ∃xφ(x).

2. ∀xφ(x) ⊢ φ(t).

Proof. 1. The sequent φ(t) ⇒ ∃xφ(x) is derivable:

φ(t) ⇒ φ(t)
∃R

φ(t) ⇒ ∃xφ(x)

2. The sequent ∀xφ(x) ⇒ φ(t) is derivable:

φ(t) ⇒ φ(t)
∀L∀xφ(x) ⇒ φ(t)

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 17

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


seq.12 Soundness

fol:seq:sou:
sec

explanation A derivation system, such as the sequent calculus, is sound if it cannot derive
things that do not actually hold. Soundness is thus a kind of guaranteed safety
property for derivation systems. Depending on which proof theoretic property
is in question, we would like to know for instance, that

1. every derivable φ is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do
not hold, the derivation system is deficient—it would derive too much. Con-
sequently, establishing the soundness of a derivation system is of the utmost
importance.

Because all these proof-theoretic properties are defined via derivability in
the sequent calculus of certain sequents, proving (1)–(3) above requires proving
something about the semantic properties of derivable sequents. We will first
define what it means for a sequent to be valid, and then show that every
derivable sequent is valid. (1)–(3) then follow as corollaries from this result.

Definition seq.27. A structure M satisfies a sequent Γ ⇒ ∆ iff either M ⊭ φ
for some φ ∈ Γ or M ⊨ φ for some φ ∈ ∆.

A sequent is valid iff every structure M satisfies it.

Theorem seq.28 (Soundness). fol:seq:sou:

thm:sequent-soundness

If LK derives Θ ⇒ Ξ, then Θ ⇒ Ξ is
valid.

Proof. Let π be a derivation of Θ ⇒ Ξ. We proceed by induction on the
number of inferences n in π.

If the number of inferences is 0, then π consists only of an initial sequent.
Every initial sequent φ⇒ φ is obviously valid, since for every M, either M ⊭ φ
or M ⊨ φ.

If the number of inferences is greater than 0, we distinguish cases according
to the type of the lowermost inference. By induction hypothesis, we can assume
that the premises of that inference are valid, since the number of inferences in
the derivation of any premise is smaller than n.

First, we consider the possible inferences with only one premise.

1. The last inference is a weakening. Then Θ ⇒ Ξ is either φ, Γ ⇒ ∆ (if
the last inference is WL) or Γ ⇒ ∆,φ (if it’s WR), and the derivation
ends in one of

18 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Γ ⇒ ∆
WL

φ, Γ ⇒ ∆
Γ ⇒ ∆

WR
Γ ⇒ ∆,φ

By induction hypothesis, Γ ⇒ ∆ is valid, i.e., for every structure M,
either there is some χ ∈ Γ such that M ⊭ χ or there is some χ ∈ ∆ such
that M ⊨ χ.

If M ⊭ χ for some χ ∈ Γ , then χ ∈ Θ as well since Θ = φ, Γ , and so
M ⊭ χ for some χ ∈ Θ. Similarly, if M ⊨ χ for some χ ∈ ∆, as χ ∈ Ξ,
M ⊨ χ for some χ ∈ Ξ. Consequently, Θ ⇒ Ξ is valid.

2. The last inference is ¬L: Then the premise of the last inference is Γ ⇒
∆,φ and the conclusion is ¬φ, Γ ⇒ ∆, i.e., the derivation ends in

Γ ⇒ ∆,φ
¬L¬φ, Γ ⇒ ∆

and Θ = ¬φ, Γ while Ξ = ∆.

The induction hypothesis tells us that Γ ⇒ ∆,φ is valid, i.e., for every
M, either (a) for some χ ∈ Γ , M ⊭ χ, or (b) for some χ ∈ ∆, M ⊨ χ,
or (c) M ⊨ φ. We want to show that Θ ⇒ Ξ is also valid. Let M be
a structure. If (a) holds, then there is χ ∈ Γ so that M ⊭ χ, but χ ∈ Θ
as well. If (b) holds, there is χ ∈ ∆ such that M ⊨ χ, but χ ∈ Ξ as well.
Finally, if M ⊨ φ, then M ⊭ ¬φ. Since ¬φ ∈ Θ, there is χ ∈ Θ such that
M ⊭ χ. Consequently, Θ ⇒ Ξ is valid.

3. The last inference is ¬R: Exercise.

4. The last inference is ∧L: There are two variants: φ ∧ ψ may be inferred
on the left from φ or from ψ on the left side of the premise. In the first
case, the π ends in

φ, Γ ⇒ ∆
∧L

φ ∧ ψ, Γ ⇒ ∆

and Θ = φ ∧ ψ, Γ while Ξ = ∆. Consider a structure M. Since by
induction hypothesis, φ, Γ ⇒ ∆ is valid, (a) M ⊭ φ, (b) M ⊭ χ for some
χ ∈ Γ , or (c) M ⊨ χ for some χ ∈ ∆. In case (a), M ⊭ φ ∧ ψ, so there
is χ ∈ Θ (namely, φ ∧ ψ) such that M ⊭ χ. In case (b), there is χ ∈ Γ

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 19

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


such that M ⊭ χ, and χ ∈ Θ as well. In case (c), there is χ ∈ ∆ such
that M ⊨ χ, and χ ∈ Ξ as well since Ξ = ∆. So in each case, M satisfies
φ ∧ ψ, Γ ⇒ ∆. Since M was arbitrary, Γ ⇒ ∆ is valid. The case where
φ ∧ ψ is inferred from ψ is handled the same, changing φ to ψ.

5. The last inference is ∨R: There are two variants: φ ∨ ψ may be inferred
on the right from φ or from ψ on the right side of the premise. In the
first case, π ends in

Γ ⇒ ∆,φ
∨R

Γ ⇒ ∆,φ ∨ ψ

Now Θ = Γ and Ξ = ∆,φ∨ψ. Consider a structure M. Since Γ ⇒ ∆,φ
is valid, (a) M ⊨ φ, (b) M ⊭ χ for some χ ∈ Γ , or (c) M ⊨ χ for some
χ ∈ ∆. In case (a), M ⊨ φ ∨ ψ. In case (b), there is χ ∈ Γ such that
M ⊭ χ. In case (c), there is χ ∈ ∆ such that M ⊨ χ. So in each case,
M satisfies Γ ⇒ ∆,φ ∨ ψ, i.e., Θ ⇒ Ξ. Since M was arbitrary, Θ ⇒ Ξ
is valid. The case where φ ∨ ψ is inferred from ψ is handled the same,
changing φ to ψ.

6. The last inference is →R: Then π ends in

φ, Γ ⇒ ∆,ψ
→R

Γ ⇒ ∆,φ→ ψ

Again, the induction hypothesis says that the premise is valid; we want
to show that the conclusion is valid as well. Let M be arbitrary. Since
φ, Γ ⇒ ∆,ψ is valid, at least one of the following cases obtains: (a)
M ⊭ φ, (b) M ⊨ ψ, (c) M ⊭ χ for some χ ∈ Γ , or (d) M ⊨ χ for some
χ ∈ ∆. In cases (a) and (b), M ⊨ φ→ ψ and so there is a χ ∈ ∆,φ→ ψ
such that M ⊨ χ. In case (c), for some χ ∈ Γ , M ⊭ χ. In case (d), for
some χ ∈ ∆, M ⊨ χ. In each case, M satisfies Γ ⇒ ∆,φ→ ψ. Since M
was arbitrary, Γ ⇒ ∆,φ→ ψ is valid.

7. The last inference is ∀L: Then there is a formula φ(x) and a closed term t
such that π ends in

φ(t), Γ ⇒ ∆
∀L∀xφ(x), Γ ⇒ ∆

20 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


We want to show that the conclusion ∀xφ(x), Γ ⇒ ∆ is valid. Consider
a structure M. Since the premise φ(t), Γ ⇒ ∆ is valid, (a) M ⊭ φ(t), (b)
M ⊭ χ for some χ ∈ Γ , or (c) M ⊨ χ for some χ ∈ ∆. In case (a), by ??,
if M ⊨ ∀xφ(x), then M ⊨ φ(t). Since M ⊭ φ(t), M ⊭ ∀xφ(x) . In case
(b) and (c), M also satisfies ∀xφ(x), Γ ⇒ ∆. Since M was arbitrary,
∀xφ(x), Γ ⇒ ∆ is valid.

8. The last inference is ∃R: Exercise.

9. The last inference is ∀R: Then there is a formula φ(x) and a constant
symbol a such that π ends in

Γ ⇒ ∆,φ(a)
∀R

Γ ⇒ ∆, ∀xφ(x)

where the eigenvariable condition is satisfied, i.e., a does not occur in
φ(x), Γ , or ∆. By induction hypothesis, the premise of the last inference
is valid. We have to show that the conclusion is valid as well, i.e., that
for any structure M, (a) M ⊨ ∀xφ(x), (b) M ⊭ χ for some χ ∈ Γ , or
(c) M ⊨ χ for some χ ∈ ∆.

Suppose M is an arbitrary structure. If (b) or (c) holds, we are done, so
suppose neither holds: for all χ ∈ Γ , M ⊨ χ, and for all χ ∈ ∆, M ⊭ χ.
We have to show that (a) holds, i.e., M ⊨ ∀xφ(x). By ??, if suffices
to show that M, s ⊨ φ(x) for all variable assignments s. So let s be an
arbitrary variable assignment. Consider the structure M′ which is just
like M except aM

′
= s(x). By ??, for any χ ∈ Γ , M′ ⊨ χ since a does

not occur in Γ , and for any χ ∈ ∆, M′ ⊭ χ. But the premise is valid, so
M′ ⊨ φ(a). By ??, M′, s ⊨ φ(a), since φ(a) is a sentence. Now s ∼x s

with s(x) = ValM
′

s (a), since we’ve defined M′ in just this way. So ??
applies, and we get M′, s ⊨ φ(x). Since a does not occur in φ(x), by
??, M, s ⊨ φ(x). Since s was arbitrary, we’ve completed the proof that
M, s ⊨ φ(x) for all variable assignments.

10. The last inference is ∃L: Exercise.

Now let’s consider the possible inferences with two premises.

1. The last inference is a cut: then π ends in

Γ ⇒ ∆,φ φ,Π ⇒ Λ
Cut

Γ,Π ⇒ ∆,Λ

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 21

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Let M be a structure. By induction hypothesis, the premises are valid,
so M satisfies both premises. We distinguish two cases: (a) M ⊭ φ and
(b) M ⊨ φ. In case (a), in order for M to satisfy the left premise, it must
satisfy Γ ⇒ ∆. But then it also satisfies the conclusion. In case (b), in
order for M to satisfy the right premise, it must satisfy Π \Λ. Again, M
satisfies the conclusion.

2. The last inference is ∧R. Then π ends in

Γ ⇒ ∆,φ Γ ⇒ ∆,ψ
∧R

Γ ⇒ ∆,φ ∧ ψ

Consider a structure M. If M satisfies Γ ⇒ ∆, we are done. So suppose
it doesn’t. Since Γ ⇒ ∆,φ is valid by induction hypothesis, M ⊨ φ.
Similarly, since Γ ⇒ ∆,ψ is valid, M ⊨ ψ. But then M ⊨ φ ∧ ψ.

3. The last inference is ∨L: Exercise.

4. The last inference is →L. Then π ends in

Γ ⇒ ∆,φ ψ,Π ⇒ Λ
→L

φ→ ψ, Γ,Π ⇒ ∆,Λ

Again, consider a structure M and suppose M doesn’t satisfy Γ,Π ⇒
∆,Λ. We have to show thatM ⊭ φ→ψ. IfM doesn’t satisfy Γ,Π ⇒ ∆,Λ,
it satisfies neither Γ ⇒ ∆ nor Π ⇒ Λ. Since, Γ ⇒ ∆,φ is valid, we have
M ⊨ φ. Since ψ,Π ⇒ Λ is valid, we have M ⊭ ψ. But then M ⊭ φ→ ψ,
which is what we wanted to show.

Problem seq.8. Complete the proof of Theorem seq.28.

Corollary seq.29. fol:seq:sou:

cor:weak-soundness

If ⊢ φ then φ is valid.

Corollary seq.30. fol:seq:sou:

cor:entailment-soundness

If Γ ⊢ φ then Γ ⊨ φ.

Proof. If Γ ⊢ φ then for some finite subset Γ0 ⊆ Γ , there is a derivation of
Γ0 ⇒ φ. By Theorem seq.28, every structure M either makes some ψ ∈ Γ0

false or makes φ true. Hence, if M ⊨ Γ then also M ⊨ φ.

Corollary seq.31. fol:seq:sou:

cor:consistency-soundness

If Γ is satisfiable, then it is consistent.

22 sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then
there is a finite Γ0 ⊆ Γ and a derivation of Γ0 ⇒ . By Theorem seq.28,
Γ0 ⇒ is valid. In other words, for every structure M, there is χ ∈ Γ0 so that
M ⊭ χ, and since Γ0 ⊆ Γ , that χ is also in Γ . Thus, no M satisfies Γ , and Γ
is not satisfiable.

seq.13 Derivations with Identity predicate

fol:seq:ide:
sec

Derivations with identity predicate require additional initial sequents and in-
ference rules.

Definition seq.32 (Initial sequents for =). If t is a closed term, then ⇒
t = t is an initial sequent.

The rules for = are (t1 and t2 are closed terms):

t1 = t2, Γ ⇒ ∆,φ(t1)
=

t1 = t2, Γ ⇒ ∆,φ(t2)

t1 = t2, Γ ⇒ ∆,φ(t2)
=

t1 = t2, Γ ⇒ ∆,φ(t1)

Example seq.33. If s and t are closed terms, then s = t, φ(s) ⊢ φ(t):

φ(s) ⇒ φ(s)
WL

s = t, φ(s) ⇒ φ(s)
=

s = t, φ(s) ⇒ φ(t)

This may be familiar as the principle of substitutability of identicals, or Leibniz’
Law.

LK proves that = is symmetric and transitive:

⇒ t1 = t1
WLt1 = t2 ⇒ t1 = t1 =

t1 = t2 ⇒ t2 = t1

t1 = t2 ⇒ t1 = t2
WLt2 = t3, t1 = t2 ⇒ t1 = t2 =

t2 = t3, t1 = t2 ⇒ t1 = t3
XLt1 = t2, t2 = t3 ⇒ t1 = t3

In the derivation on the left, the formula x = t1 is our φ(x). On the right, we
take φ(x) to be t1 = x.

Problem seq.9. Give derivations of the following sequents:

1. ⇒ ∀x ∀y ((x = y ∧ φ(x))→ φ(y))

2. ∃xφ(x)∧ ∀y ∀z ((φ(y)∧φ(z))→ y = z) ⇒ ∃x (φ(x)∧ ∀y (φ(y)→ y = x))

sequent-calculus rev: 6c541de (2024-02-28) by OLP / CC–BY 23

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


seq.14 Soundness with Identity predicate

fol:seq:sid:
sec

Proposition seq.34. LK with initial sequents and rules for identity is sound.

Proof. Initial sequents of the form ⇒ t = t are valid, since for every struc-
ture M, M ⊨ t = t. (Note that we assume the term t to be closed, i.e., it
contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is =. Then the premise is t1 =
t2, Γ ⇒ ∆,φ(t1) and the conclusion is t1 = t2, Γ ⇒ ∆,φ(t2). Consider a struc-
ture M. We need to show that the conclusion is valid, i.e., if M ⊨ t1 = t2 and
M ⊨ Γ , then either M ⊨ χ for some χ ∈ ∆ or M ⊨ φ(t2).

By induction hypothesis, the premise is valid. This means that if M ⊨
t1 = t2 and M ⊨ Γ either (a) for some χ ∈ ∆, M ⊨ χ or (b) M ⊨ φ(t1). In
case (a) we are done. Consider case (b). Let s be a variable assignment with
s(x) = ValM(t1). By ??, M, s ⊨ φ(t1). Since s ∼x s, by ??, M, s ⊨ φ(x). since
M ⊨ t1 = t2, we have ValM(t1) = ValM(t2), and hence s(x) = ValM(t2). By
applying ?? again, we also have M, s ⊨ φ(t2). By ??, M ⊨ φ(t2).

Photo Credits

24



Bibliography

25


	The Sequent Calculus
	Rules and Derivations
	Propositional Rules
	Quantifier Rules
	Structural Rules
	Derivations
	Examples of Derivations
	Derivations with Quantifiers
	Proof-Theoretic Notions
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Derivability and the Quantifiers
	Soundness
	Derivations with Identity predicate
	Soundness with Identity predicate

	Photo Credits
	Bibliography

