seq.1 Derivability and the Quantifiers

The completeness theorem also requires that the sequent calculus rules rules yield the facts about \vdash established in this section.

Theorem seq.1. If c is a constant not occurring in Γ or $\varphi(x)$ and $\Gamma \vdash \varphi(c)$, then $\Gamma \vdash \forall x \varphi(x)$.

Proof. Let π_0 be an LK-derivation of $\Gamma_0 \Rightarrow \varphi(c)$ for some finite $\Gamma_0 \subseteq \Gamma$. By adding a $\forall R$ inference, we obtain a derivation of $\Gamma_0 \Rightarrow \forall x \varphi(x)$, since c does not occur in Γ or $\varphi(x)$ and thus the eigenvariable condition is satisfied. \(\square\)

Proposition seq.2.

1. $\varphi(t) \vdash \exists x \varphi(x)$.
2. $\forall x \varphi(x) \vdash \varphi(t)$.

Proof.

1. The sequent $\varphi(t) \Rightarrow \exists x \varphi(x)$ is derivable:

$$
\begin{array}{c}
\varphi(t) \Rightarrow \varphi(t) \\
\frac{}{\varphi(t) \Rightarrow \exists x \varphi(x)} \exists R
\end{array}
$$

2. The sequent $\forall x \varphi(x) \Rightarrow \varphi(t)$ is derivable:

$$
\begin{array}{c}
\varphi(t) \Rightarrow \varphi(t) \\
\frac{}{\forall x \varphi(x) \Rightarrow \varphi(t)} \forall L
\end{array}
$$

\(\square\)

Photo Credits

Bibliography