Derivability and Consistency

We will now establish a number of properties of the derivability relation. They are independently interesting, but each will play a role in the proof of the completeness theorem.

Proposition ntd.1. If $\Gamma \vdash \varphi$ and $\Gamma \cup \{\varphi\}$ is inconsistent, then Γ is inconsistent.

Proof. Let the derivation of φ from Γ be δ_1 and the derivation of \bot from $\Gamma \cup \{\varphi\}$ be δ_2. We can then derive:

\[
\begin{array}{c}
\Gamma, [\varphi]^1 \\
\vdots \\
\delta_2 \\
\vdots \\
\bot \\
\hline
\varphi \\
\hline
\Gamma, [\neg \varphi]^1 \\
\vdots \\
\delta_1 \\
\vdots \\
\bot \\
\hline
\end{array}
\]

In the new derivation, the assumption φ is discharged, so it is a derivation from Γ.

Proposition ntd.2. $\Gamma \vdash \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ is inconsistent.

Proof. First suppose $\Gamma \vdash \varphi$, i.e., there is a derivation δ_0 of φ from undischarged assumptions Γ. We obtain a derivation of \bot from $\Gamma \cup \{\neg \varphi\}$ as follows:

\[
\begin{array}{c}
\Gamma \\
\vdots \\
\delta_0 \\
\vdots \\
\neg \varphi \\
\hline
\varphi \\
\hline
\bot \\
\hline
\end{array}
\]

Now assume $\Gamma \cup \{\neg \varphi\}$ is inconsistent, and let δ_1 be the corresponding derivation of \bot from undischarged assumptions in $\Gamma \cup \{\neg \varphi\}$. We obtain a derivation of φ from Γ alone by using \bot_C:

\[
\begin{array}{c}
\Gamma, [\neg \varphi]^1 \\
\vdots \\
\delta_1 \\
\vdots \\
\bot \\
\hline
\varphi \\
\hline
\bot_C \\
\end{array}
\]

Problem ntd.1. Prove that $\Gamma \vdash \neg \varphi$ iff $\Gamma \cup \{\varphi\}$ is inconsistent.

Proposition ntd.3. If $\Gamma \vdash \varphi$ and $\neg \varphi \in \Gamma$, then Γ is inconsistent.
Proof. Suppose $\Gamma \vdash \varphi$ and $\neg \varphi \in \Gamma$. Then there is a derivation δ of φ from Γ. Consider this simple application of the \neg-Elim rule:

$$
\begin{array}{c}
\Gamma \\
\vdots \\
\delta \\
\neg \varphi \\
\varphi \\
\end{array}
\quad \neg\text{Elim}
$$

Since $\neg \varphi \in \Gamma$, all undischarged assumptions are in Γ, this shows that $\Gamma \vdash \bot$. \hfill \square

Proposition ntd.4. If $\Gamma \cup \{\varphi\}$ and $\Gamma \cup \{\neg \varphi\}$ are both inconsistent, then Γ is inconsistent.

Proof. There are derivations δ_1 and δ_2 of \bot from $\Gamma \cup \{\varphi\}$ and \bot from $\Gamma \cup \{\neg \varphi\}$, respectively. We can then derive

$$
\begin{array}{c}
\Gamma, [\neg \varphi]^2 \\
\vdots \\
\delta_2 \\
\bot \\
\end{array}
\quad
\begin{array}{c}
\Gamma, [\varphi]^1 \\
\vdots \\
\delta_1 \\
\bot \\
\end{array}
\quad
\begin{array}{c}
\bot \\
\neg\text{Intro} \\
\neg\text{Intro} \\
\neg\text{Intro} \\
\neg\text{Intro} \\
\neg\text{Elim} \\
\end{array}
\quad
\begin{array}{c}
\bot \\
\end{array}
$$

Since the assumptions φ and $\neg \varphi$ are discharged, this is a derivation of \bot from Γ alone. Hence Γ is inconsistent. \hfill \square

Photo Credits

Bibliography