Propositional Rules

Rules for \land

- **\landIntro**
 \[
 \varphi, \psi \vdash \varphi \land \psi
 \]

- **\landElim**
 \[
 \frac{\varphi \land \psi}{\varphi} \\
 \frac{\varphi \land \psi}{\psi}
 \]

Rules for \lor

- **\lorIntro**
 \[
 \frac{\varphi}{\varphi \lor \psi} \\
 \frac{\psi}{\varphi \lor \psi}
 \]

- **\lorElim**
 \[
 \frac{\varphi \lor \psi}{\chi} \quad \frac{\varphi \lor \psi}{\chi} \\
 \frac{\varphi \lor \psi}{\chi}
 \]

Rules for \rightarrow

- **\rightarrowIntro**
 \[
 \frac{\varphi \rightarrow \psi}{\psi} \\
 \frac{\varphi \rightarrow \psi}{\psi}
 \]

- **\rightarrowElim**
 \[
 \frac{\varphi \land \psi}{\varphi} \\
 \frac{\varphi \land \psi}{\psi}
 \]

Rules for \neg

- **\negIntro**
 \[
 \frac{\varphi}{\neg \varphi}
 \]

- **\negElim**
 \[
 \frac{\neg \varphi}{\bot}
 \]

propositional-rules rev: ad37848 (2024-05-01) by OLP / CC–BY
Rules for \bot

\[
\frac{\bot}{\phi} \quad \bot_I
\]

Note that \negIntro and \bot_C are very similar: The difference is that \negIntro derives a negated sentence $\neg \phi$ but \bot_C a positive sentence ϕ.

Whenever a rule indicates that some assumption may be discharged, we take this to be a permission, but not a requirement. E.g., in the \rightarrowIntro rule, we may discharge any number of assumptions of the form ϕ in the derivation of the premise ψ, including zero.

Photo Credits

Bibliography