Identity com.1

fol:com:ide: The construction of the term model given in the preceding section is enough explanation to establish completeness for first-order logic for sets Γ that do not contain =. The term model satisfies every $\varphi \in \Gamma^*$ which does not contain = (and hence all $\varphi \in \Gamma$). It does not work, however, if = is present. The reason is that Γ^* then may contain a sentence t = t', but in the term model the value of any term is that term itself. Hence, if t and t' are different terms, their values in the term model—i.e., t and t', respectively—are different, and so t = t' is false. We can fix this, however, using a construction known as "factoring."

> **Definition com.1.** Let Γ^* be a consistent and complete set of sentences in \mathcal{L} . We define the relation \approx on the set of closed terms of \mathcal{L} by

$$t \approx t'$$
 iff $t = t' \in \Gamma^*$

fol:com:ide: **Proposition com.2.** The relation \approx has the following properties:

prop:approx-equiv 1. \approx is reflexive.

- 2. \approx is symmetric.
- 3. \approx is transitive.
- 4. If $t \approx t'$, f is a function symbol, and $t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n$ are closed terms, then

$$f(t_1, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_n) \approx f(t_1, \ldots, t_{i-1}, t', t_{i+1}, \ldots, t_n).$$

5. If $t \approx t'$, R is a predicate symbol, and $t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n$ are closed terms, then

$$R(t_1, \dots, t_{i-1}, t, t_{i+1}, \dots, t_n) \in \Gamma^* \text{ iff} R(t_1, \dots, t_{i-1}, t', t_{i+1}, \dots, t_n) \in \Gamma^*.$$

Proof. Since Γ^* is consistent and complete, $t = t' \in \Gamma^*$ iff $\Gamma^* \vdash t = t'$. Thus it is enough to show the following:

- 1. $\Gamma^* \vdash t = t$ for all closed terms t.
- 2. If $\Gamma^* \vdash t = t'$ then $\Gamma^* \vdash t' = t$.
- 3. If $\Gamma^* \vdash t = t'$ and $\Gamma^* \vdash t' = t''$, then $\Gamma^* \vdash t = t''$.
- 4. If $\Gamma^* \vdash t = t'$, then

$$\Gamma^* \vdash f(t_1, \dots, t_{i-1}, t, t_{i+1}, \dots, t_n) = f(t_1, \dots, t_{i-1}, t', t_{i+1}, \dots, t_n)$$

for every *n*-place function symbol f and closed terms $t_1, \ldots, t_{i-1}, t_{i+1}$, \ldots, t_n .

identity rev: 6891b66 (2024-12-01) by OLP / CC-BY

5. If $\Gamma^* \vdash t = t'$ and $\Gamma^* \vdash R(t_1, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_n)$, then $\Gamma^* \vdash R(t_1, \ldots, t_{i-1}, t', t_{i+1}, \ldots, t_n)$ for every *n*-place predicate symbol *R* and closed terms $t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n$.

Problem com.1. Complete the proof of Proposition com.2.

Definition com.3. Suppose Γ^* is a consistent and complete set in a language \mathcal{L} , t is a closed term, and \approx as in the previous definition. Then:

$$[t]_{\approx} = \{t': t' \in \operatorname{Trm}(\mathcal{L}), t \approx t'\}$$

and $\operatorname{Trm}(\mathcal{L})_{\approx} = \{[t]_{\approx} : t \in \operatorname{Trm}(\mathcal{L})\}.$

Definition com.4. Let $\mathfrak{M} = \mathfrak{M}(\Gamma^*)$ be the term model for Γ^* from ??. Then following structure:

- 1. $|\mathfrak{M}/_{\approx}| = \operatorname{Trm}(\mathcal{L})/_{\approx}.$
- 2. $c^{\mathfrak{M}/\approx} = [c]_{\approx}$
- 3. $f^{\mathfrak{M}/\approx}([t_1]_{\approx},\ldots,[t_n]_{\approx}) = [f(t_1,\ldots,t_n)]_{\approx}$
- 4. $\langle [t_1]_{\approx}, \dots, [t_n]_{\approx} \rangle \in R^{\mathfrak{M}/\approx}$ iff $\mathfrak{M} \models R(t_1, \dots, t_n)$, i.e., iff $R(t_1, \dots, t_n) \in \Gamma^*$.

explanation

Note that we have defined $f^{\mathfrak{M}/\approx}$ and $R^{\mathfrak{M}/\approx}$ for elements of $\operatorname{Trm}(\mathcal{L})/\approx$ by referring to them as $[t]_{\approx}$, i.e., via *representatives* $t \in [t]_{\approx}$. We have to make sure that these definitions do not depend on the choice of these representatives, i.e., that for some other choices t' which determine the same equivalence classes $([t]_{\approx} = [t']_{\approx})$, the definitions yield the same result. For instance, if R is a oneplace predicate symbol, the last clause of the definition says that $[t]_{\approx} \in R^{\mathfrak{M}/\approx}$ iff $\mathfrak{M} \models R(t)$. If for some other term t' with $t \approx t', \mathfrak{M} \nvDash R(t)$, then the definition would require $[t']_{\approx} \notin R^{\mathfrak{M}/\approx}$. If $t \approx t'$, then $[t]_{\approx} = [t']_{\approx}$, but we can't have both $[t]_{\approx} \in R^{\mathfrak{M}/\approx}$ and $[t]_{\approx} \notin R^{\mathfrak{M}/\approx}$. However, Proposition com.2 guarantees that this cannot happen.

Proposition com.5. $\mathfrak{M}/_{\approx}$ is well defined, i.e., if $t_1, \ldots, t_n, t'_1, \ldots, t'_n$ are closed terms, and $t_i \approx t'_i$ then

1.
$$[f(t_1, ..., t_n)]_{\approx} = [f(t'_1, ..., t'_n)]_{\approx}, i.e.,$$

 $f(t_1, ..., t_n) \approx f(t'_1, ..., t'_n)$

and

2. $\mathfrak{M} \models R(t_1, \dots, t_n)$ iff $\mathfrak{M} \models R(t'_1, \dots, t'_n)$, i.e., $R(t_1, \dots, t_n) \in \Gamma^* \text{ iff } R(t'_1, \dots, t'_n) \in \Gamma^*.$

Proof. Follows from Proposition com.2 by induction on n.

identity rev: 6891b66 (2024-12-01) by OLP / CC-BY

2

As in the case of the term model, before proving the truth lemma we need the following lemma.

fol:com:ide: Lemma com.6. Let $\mathfrak{M} = \mathfrak{M}(\Gamma^*)$, then $\operatorname{Val}^{\mathfrak{M}/\approx}(t) = [t]_{\approx}$. lem:val-in-termmodel-factored

Proof. The proof is similar to that of ??.

Problem com.2. Complete the proof of Lemma com.6.

lem:truth

fol:com:ide: Lemma com.7. $\mathfrak{M}/_{\approx} \vDash \varphi$ iff $\varphi \in \Gamma^*$ for all sentences φ .

Proof. By induction on φ , just as in the proof of ??. The only case that needs additional attention is when $\varphi \equiv t = t'$.

$$\mathfrak{M}_{\approx} \vDash t = t' \text{ iff } [t]_{\approx} = [t']_{\approx} \text{ (by definition of } \mathfrak{M}_{\approx})$$

iff $t \approx t'$ (by definition of $[t]_{\approx}$)
iff $t = t' \in \Gamma^*$ (by definition of \approx). \Box

Note that while $\mathfrak{M}(\Gamma^*)$ is always enumerable and infinite, \mathfrak{M}_{\approx} may be digression finite, since it may turn out that there are only finitely many classes $[t]_{\approx}$. This is to be expected, since Γ may contain sentences which require any structure in which they are true to be finite. For instance, $\forall x \forall y x = y$ is a consistent sentence, but is satisfied only in structures with a domain that contains exactly one element.

Photo Credits

Bibliography