rec.1 Other Recursions

empireciore; Using pairing and sequencing, we can justify more exotic (and useful) forms
"¢ of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

ho(Z,0) = fo(7)
hi(Z,0) = f1(Z)
ho(Z,y + 1) = go(Z, y, ho(Z, y), h1(Z,y))

hi(Z,y +1) = g1(Z, y, ho(Z,y), ha(Z,y))
This is an instance of simultaneous recursion. Another useful way of defining

functions is to give the value of h(Z,y + 1) in terms of all the values h(Z,0),
.., h(Z,y), as in the following definition:

h(@,0) = f(Z)
h(fa Y+ 1) = g(faya <h(fa 0)7 ) h(fa y)>)

The following schema captures this idea more succinctly:

h’(f’ y) = g(fvyv <h(f7 O)’ ) h(f’y - 1)>)

with the understanding that the last argument to g is just the empty sequence
when y is 0. In either formulation, the idea is that in computing the “successor
step,” the function A can make use of the entire sequence of values computed
so far. This is known as a course-of-values recursion. For a particular example,
it can be used to justify the following type of definition:

b y) = {g(@y, PE k(T y)) i K(Ey) <y

f(@) otherwise

In other words, the value of h at y can be computed in terms of the value of h
at any previous value, given by k.

You should think about how to obtain these functions using ordinary prim-
itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

h(Z,0) = f(Z)
h(.’i",y + 1) = g(f7y7h(k(f)7y))

This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)

Photo Credits

Bibliography



	Other Recursions
	Photo Credits
	Bibliography

