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Using pairing and sequencing, we can justify more exotic (and useful) forms
of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

h0(~x, 0) = f0(~x)

h1(~x, 0) = f1(~x)

h0(~x, y + 1) = g0(~x, y, h0(~x, y), h1(~x, y))

h1(~x, y + 1) = g1(~x, y, h0(~x, y), h1(~x, y))

This is an instance of simultaneous recursion. Another useful way of defining
functions is to give the value of h(~x, y + 1) in terms of all the values h(~x, 0),
. . . , h(~x, y), as in the following definition:

h(~x, 0) = f(~x)

h(~x, y + 1) = g(~x, y, 〈h(~x, 0), . . . , h(~x, y)〉).

The following schema captures this idea more succinctly:

h(~x, y) = g(~x, y, 〈h(~x, 0), . . . , h(~x, y − 1)〉)

with the understanding that the last argument to g is just the empty sequence
when y is 0. In either formulation, the idea is that in computing the “successor
step,” the function h can make use of the entire sequence of values computed
so far. This is known as a course-of-values recursion. For a particular example,
it can be used to justify the following type of definition:

h(~x, y) =

{
g(~x, y, h(~x, k(~x, y))) if k(~x, y) < y

f(~x) otherwise

In other words, the value of h at y can be computed in terms of the value of h
at any previous value, given by k.

You should think about how to obtain these functions using ordinary prim-
itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

h(~x, 0) = f(~x)

h(~x, y + 1) = g(~x, y, h(k(~x), y))

This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)
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