If f and g are two one-place functions of natural numbers, we can compose them: $h(x) = g(f(x))$. The new function $h(x)$ is then defined by composition from the functions f and g. We’d like to generalize this to functions of more than one argument.

Here’s one way of doing this: suppose f is a k-place function, and g_0, \ldots, g_{k-1} are k functions which are all n-place. Then we can define a new n-place function h as follows:

$$h(x_0, \ldots, x_{n-1}) = f(g_0(x_0, \ldots, x_{n-1}), \ldots, g_{k-1}(x_0, \ldots, x_{n-1}))$$

If f and all g_i are computable, so is h: To compute $h(x_0, \ldots, x_{n-1})$, first compute the values $y_i = g_i(x_0, \ldots, x_{n-1})$ for each $i = 0, \ldots, k - 1$. Then feed these values into f to compute $h(x_0, \ldots, x_{k-1}) = f(y_0, \ldots, y_{k-1})$.

This may seem like an overly restrictive characterization of what happens when we compute a new function using some existing ones. For one thing, sometimes we do not use all the arguments of a function, as when we defined $g(x, y, z) = \text{succ}(z)$ for use in the primitive recursive definition of add. Suppose we are allowed use of the following functions:

$$P^k_n(x_0, \ldots, x_{n-1}) = x_i$$

The functions P^k_n are called projection functions: P^n_i is an n-place function. Then g can be defined by

$$g(x, y, z) = \text{succ}(P^3_2(x, y, z)).$$

Here the role of f is played by the 1-place function succ, so $k = 1$. And we have one 3-place function P^3_2 which plays the role of g_0. The result is a 3-place function that returns the successor of the third argument.

The projection functions also allow us to define new functions by reordering or identifying arguments. For instance, the function $h(x) = \text{add}(x, x)$ can be defined by

$$h(x_0) = \text{add}(P^1_0(x_0), P^1_0(x_0)).$$

Here $k = 2$, $n = 1$, the role of $f(y_0, y_1)$ is played by add, and the roles of $g_0(x_0)$ and $g_1(x_0)$ are both played by $P^1_0(x_0)$, the one-place projection function (aka the identity function).

If $f(y_0, y_1)$ is a function we already have, we can define the function $h(x_0, x_1) = f(x_1, x_0)$ by

$$h(x_0, x_1) = f(P^2_1(x_0, x_1), P^2_0(x_0, x_1)).$$

Here $k = 2$, $n = 2$, and the roles of g_0 and g_1 are played by P^2_2 and P^2_0, respectively.

You may also worry that g_0, \ldots, g_{k-1} are all required to have the same arity n. (Remember that the arity of a function is the number of arguments; an n-place function has arity n.) But adding the projection functions provides...
the desired flexibility. For example, suppose f and g are 3-place functions and h is the 2-place function defined by

$$h(x, y) = f(x, g(x, x, y), y).$$

The definition of h can be rewritten with the projection functions, as

$$h(x, y) = f(P^2_0(x, y), g(P^2_0(x, y), P^2_0(x, y), P^2_1(x, y)), P^2_1(x, y)).$$

Then h is the composition of f with P^2_0, l, and P^2_1, where

$$l(x, y) = g(P^2_0(x, y), P^2_0(x, y), P^2_1(x, y)),$$

i.e., l is the composition of g with P^2_0, P^2_0, and P^2_1.

Photo Credits

Bibliography