The next theorem is known as the “s-m-n theorem,” for a reason that will be clear in a moment. The hard part is understanding just what the theorem says; once you understand the statement, it will seem fairly obvious.

Theorem thy.1. For each pair of natural numbers \(n\) and \(m\), there is a primitive recursive function \(s^m_n\) such that for every sequence \(x, a_0, \ldots, a_{m-1}, y_0, \ldots, y_{n-1}\), we have

\[
\phi_{s^m_n(x,a_0,\ldots,a_{m-1})}(y_0, \ldots, y_{n-1}) \simeq \phi_{x}^{m+n}(a_0, \ldots, a_{m-1}, y_0, \ldots, y_{n-1}).
\]

It is helpful to think of \(s^m_n\) as acting on programs. That is, \(s^m_n\) takes a program, \(x\), for an \((m + n)\)-ary function, as well as fixed inputs \(a_0, \ldots, a_{m-1}\); and it returns a program, \(s^m_n(x, a_0, \ldots, a_{m-1})\), for the \(n\)-ary function of the remaining arguments. It you think of \(x\) as the description of a Turing machine, then \(s^m_n(x, a_0, \ldots, a_{m-1})\) is the Turing machine that, on input \(y_0, \ldots, y_{n-1}\), prepends \(a_0, \ldots, a_{m-1}\) to the input string, and runs \(x\). Each \(s^m_n\) is then just a primitive recursive function that finds a code for the appropriate Turing machine.