## und.1 Verifying the Representation

 ${\rm tms:und:ver:}\\ {\rm sec}$ 

In order to verify that our representation works, we have to prove two things. First, we have to show that if M halts on input w, then  $\tau(M,w) \to \alpha(M,w)$  is valid. Then, we have to show the converse, i.e., that if  $\tau(M,w) \to \alpha(M,w)$  is valid, then M does in fact eventually halt when run on input w.

The strategy for proving these is very different. For the first result, we have to show that a sentence of first-order logic (namely,  $\tau(M, w) \to \alpha(M, w)$ ) is valid. The easiest way to do this is to give a derivation. Our proof is supposed to work for all M and w, though, so there isn't really a single sentence for which we have to give a derivation, but infinitely many. So the best we can do is to prove by induction that, whatever M and w look like, and however many steps it takes M to halt on input w, there will be a derivation of  $\tau(M, w) \to \alpha(M, w)$ .

Naturally, our induction will proceed on the number of steps M takes before it reaches a halting configuration. In our inductive proof, we'll establish that for each step n of the run of M on input w,  $\tau(M,w) \vDash \chi(M,w,n)$ , where  $\chi(M,w,n)$  correctly describes the configuration of M run on w after n steps. Now if M halts on input w after, say, n steps,  $\chi(M,w,n)$  will describe a halting configuration. We'll also show that  $\chi(M,w,n) \vDash \alpha(M,w)$ , whenever  $\chi(M,w,n)$  describes a halting configuration. So, if M halts on input w, then for some n, M will be in a halting configuration after n steps. Hence,  $\tau(M,w) \vDash \chi(M,w,n)$  where  $\chi(M,w,n)$  describes a halting configuration, and since in that case  $\chi(M,w,n) \vDash \alpha(M,w)$ , we get that  $T(M,w) \vDash \alpha(M,w)$ , i.e., that  $\vDash \tau(M,w) \to \alpha(M,w)$ .

The strategy for the converse is very different. Here we assume that  $\vDash \tau(M,w) \to \alpha(M,w)$  and have to prove that M halts on input w. From the hypothesis we get that  $\tau(M,w) \vDash \alpha(M,w)$ , i.e.,  $\alpha(M,w)$  is true in every structure in which  $\tau(M,w)$  is true. So we'll describe a structure  $\mathfrak M$  in which  $\tau(M,w)$  is true: its domain will be  $\mathbb N$ , and the interpretation of all the  $Q_q$  and  $S_\sigma$  will be given by the configurations of M during a run on input w. So, e.g.,  $\mathfrak M \vDash Q_q(\overline m, \overline n)$  iff T, when run on input w for n steps, is in state q and scanning square m. Now since  $\tau(M,w) \vDash \alpha(M,w)$  by hypothesis, and since  $\mathfrak M \vDash \tau(M,w)$  by construction,  $\mathfrak M \vDash \alpha(M,w)$ . But  $\mathfrak M \vDash \alpha(M,w)$  iff there is some  $n \in |\mathfrak M| = \mathbb N$  so that M, run on input w, is in a halting configuration after n steps.

**Definition und.1.** Let  $\chi(M, w, n)$  be the sentence

$$Q_q(\overline{m}, \overline{n}) \wedge S_{\sigma_0}(\overline{0}, \overline{n}) \wedge \cdots \wedge S_{\sigma_k}(\overline{k}, \overline{n}) \wedge \forall x (\overline{k} < x \rightarrow S_0(x, \overline{n}))$$

where q is the state of M at time n, M is scanning square m at time n, square i contains symbol  $\sigma_i$  at time n for  $0 \le i \le k$  and k is the right-most non-blank square of the tape at time 0, or the right-most square the tape head has visited after n steps, whichever is greater.

 $tms: und: ver: \\ lem: halt-config-implies-halt$ 

tms:und:ver: Lemma und.2. If M run on input w is in a halting configuration after n g-implies-halt steps, then  $\chi(M, w, n) \vDash \alpha(M, w)$ .

*Proof.* Suppose that M halts for input w after n steps. There is some state q, square m, and symbol  $\sigma$  such that:

- 1. After n steps, M is in state q scanning square m on which  $\sigma$  appears.
- 2. The transition function  $\delta(q, \sigma)$  is undefined.

 $\chi(M, w, n)$  is the description of this configuration and will include the clauses  $Q_q(\overline{m}, \overline{n})$  and  $S_{\sigma}(\overline{m}, \overline{n})$ . These clauses together imply  $\alpha(M, w)$ :

$$\exists x \,\exists y \, (\bigvee_{\langle q,\sigma\rangle \in X} (Q_q(x,y) \wedge S_{\sigma}(x,y)))$$

since 
$$Q_{q'}(\overline{m}, \overline{n}) \wedge S_{\sigma'}(\overline{m}, \overline{n}) \models \bigvee_{\langle q, \sigma \rangle \in X} (Q_q(\overline{m}, \overline{n}) \wedge S_{\sigma}(\overline{m}, \overline{n}))$$
, as  $\langle q', \sigma' \rangle \in X$ .

explanation

So if M halts for input w, then there is some n such that  $\chi(M, w, n) \models \alpha(M, w)$ . We will now show that for any time  $n, \tau(M, w) \models \chi(M, w, n)$ .

**Lemma und.3.** For each n, if M has not halted after n steps,  $\tau(M, w) \models \underset{lem:config}{\textit{tms:und:ver:}} \chi(M, w, n)$ .

*Proof.* Induction basis: If n=0, then the conjuncts of  $\chi(M,w,0)$  are also conjuncts of  $\tau(M,w)$ , so entailed by it.

Inductive hypothesis: If M has not halted before the nth step, then  $\tau(M, w) \vDash \chi(M, w, n)$ . We have to show that (unless  $\chi(M, w, n)$  describes a halting configuration),  $\tau(M, w) \vDash \chi(M, w, n + 1)$ .

Suppose n > 0 and after n steps, M started on w is in state q scanning square m. Since M does not halt after n steps, there must be an instruction of one of the following three forms in the program of M:

1. 
$$\delta(q, \sigma) = \langle q', \sigma', R \rangle$$

2.  $\delta(q, \sigma) = \langle q', \sigma', L \rangle$ 

3. 
$$\delta(q, \sigma) = \langle q', \sigma', N \rangle$$

2

tms:und:ver: right tms:und:ver:

tms:und:ver:

We will consider each of these three cases in turn.

1. Suppose there is an instruction of the form (1). By ??, ??, this means

$$\forall x \, \forall y \, ((Q_q(x,y) \land S_{\sigma}(x,y)) \rightarrow (Q_{q'}(x',y') \land S_{\sigma'}(x,y') \land \varphi(x,y)))$$

is a conjunct of  $\tau(M, w)$ . This entails the following sentence (universal instantiation,  $\overline{m}$  for x and  $\overline{n}$  for y):

$$(Q_q(\overline{m}, \overline{n}) \wedge S_{\sigma}(\overline{m}, \overline{n})) \rightarrow (Q_{\sigma'}(\overline{m'}, \overline{n'}) \wedge S_{\sigma'}(\overline{m}, \overline{n'}) \wedge \varphi(\overline{m}, \overline{n})).$$

By induction hypothesis,  $\tau(M, w) \vDash \chi(M, w, n)$ , i.e.,

$$Q_q(\overline{m}, \overline{n}) \wedge S_{\sigma_0}(\overline{0}, \overline{n}) \wedge \cdots \wedge S_{\sigma_k}(\overline{k}, \overline{n}) \wedge \forall x \, (\overline{k} < x \to S_0(x, \overline{n}))$$

Since after n steps, tape square m contains  $\sigma$ , the corresponding conjunct is  $S_{\sigma}(\overline{m}, \overline{n})$ , so this entails:

$$Q_q(\overline{m}, \overline{n}) \wedge S_{\sigma}(\overline{m}, \overline{n}))$$

We now get

$$Q_{q'}(\overline{m}', \overline{n}') \wedge S_{\sigma'}(\overline{m}, \overline{n}') \wedge S_{\sigma_0}(\overline{0}, \overline{n}') \wedge \cdots \wedge S_{\sigma_k}(\overline{k}, \overline{n}') \wedge \forall x (\overline{k} < x \to S_0(x, \overline{n}'))$$

as follows: The first line comes directly from the consequent of the preceding conditional, by modus ponens. Each conjunct in the middle line—which excludes  $S_{\sigma_m}(\overline{m}, \overline{n}')$ —follows from the corresponding conjunct in  $\chi(M, w, n)$  together with  $\varphi(\overline{m}, \overline{n})$ .

If m < k,  $\tau(M, w) \vdash \overline{m} < \overline{k}$  (??) and by transitivity of <, we have  $\forall x \, (\overline{k} < x \to \overline{m} < x)$ . If m = k, then  $\forall x \, (\overline{k} < x \to \overline{m} < x)$  by logic alone. The last line then follows from the corresponding conjunct in  $\chi(M, w, n)$ ,  $\forall x \, (\overline{k} < x \to \overline{m} < x)$ , and  $\varphi(\overline{m}, \overline{n})$ . If m < k, this already is  $\chi(M, w, n+1)$ .

Now suppose m=k. In that case, after n+1 steps, the tape head has also visited square k+1, which now is the right-most square visited. So  $\chi(M,w,n+1)$  has a new conjunct,  $S_0(\overline{k}',\overline{n}')$ , and the last conjuct is  $\forall x \, (\overline{k}' < x \to S_0(x,\overline{n}'))$ . We have to verify that these two sentences are also implied.

We already have  $\forall x \, (\overline{k} < x \to S_0(x, \overline{n}'))$ . In particular, this gives us  $\overline{k} < \overline{k'} \to S_0(\overline{k'}, \overline{n'})$ . From the axiom  $\forall x \, x < x'$  we get  $\overline{k} < \overline{k'}$ . By modus ponens,  $S_0(\overline{k'}, \overline{n'})$  follows.

Also, since  $\tau(M, w) \vdash \overline{k} < \overline{k}'$ , the axiom for transitivity of < gives us  $\forall x (\overline{k}' < x \rightarrow S_0(x, \overline{n}'))$ . (We leave the verification of this as an exercise.)

2. Suppose there is an instruction of the form (2). Then, by ??, ??,

$$\forall x \, \forall y \, ((Q_q(x', y) \land S_{\sigma}(x', y)) \rightarrow (Q_{q'}(x, y') \land S_{\sigma'}(x', y') \land \varphi(x, y))) \land \\ \forall y \, ((Q_{q_i}(0, y) \land S_{\sigma}(0, y)) \rightarrow (Q_{q_i}(0, y') \land S_{\sigma'}(0, y') \land \varphi(0, y)))$$

is a conjunct of  $\tau(M, w)$ . If m > 0, then let l = m - 1 (i.e., m = l + 1). The first conjunct of the above sentence entails the following:

$$(Q_{q}(\overline{l}', \overline{n}) \wedge S_{\sigma}(\overline{l}', \overline{n})) \rightarrow (Q_{q'}(\overline{l}, \overline{n}') \wedge S_{\sigma'}(\overline{l}', \overline{n}') \wedge \varphi(\overline{l}, \overline{n}))$$

Otherwise, let l=m=0 and consider the following sentence entailed by the second conjunct:

$$((Q_{q_i}(0,\overline{n}) \wedge S_{\sigma}(0,\overline{n})) \rightarrow (Q_{q_i}(0,\overline{n}') \wedge S_{\sigma'}(0,\overline{n}') \wedge \varphi(0,\overline{n})))$$

Either sentence implies

$$Q_{q'}(\overline{l}, \overline{n}') \wedge S_{\sigma'}(\overline{m}, \overline{n}') \wedge S_{\sigma_0}(\overline{l}, \overline{n}') \wedge \cdots \wedge S_{\sigma_k}(\overline{k}, \overline{n}') \wedge \forall x (\overline{k} < x \to S_0(x, \overline{n}'))$$

as before. (Note that in the first case,  $\overline{l}' = \overline{m}$  and in the second case  $\overline{l} = 0$ .) But this just is  $\chi(M, w, n + 1)$ .

3. Case (3) is left as an exercise.

We have shown that for any  $n, \tau(M, w) \models \chi(M, w, n)$ .

Problem und.1. Complete case (3) of the proof of Lemma und.3.

**Problem und.2.** Give a derivation of  $S_{\sigma_i}(\bar{i}, \bar{n}')$  from  $S_{\sigma_i}(\bar{i}, \bar{n})$  and  $\varphi(m, n)$  (assuming  $i \neq m$ , i.e., either i < m or m < i).

**Problem und.3.** Give a derivation of  $\forall x \, (\overline{k}' < x \to S_0(x, \overline{n}'))$  from  $\forall x \, (\overline{k} < x \to S_0(x, \overline{n}'))$ ,  $\forall x \, x < x'$ , and  $\forall x \, \forall y \, \forall z \, ((x < y \land y < z) \to x < z)$ .)

**Lemma und.4.** If M halts on input w, then  $\tau(M, w) \to \alpha(M, w)$  is valid.

tms:und:ver: lem:valid-if-halt

Proof. By Lemma und.3, we know that, for any time n, the description  $\chi(M,w,n)$  of the configuration of M at time n is entailed by  $\tau(M,w)$ . Suppose M halts after k steps. It will be scanning square m, say. Then  $\chi(M,w,k)$  describes a halting configuration of M, i.e., it contains as conjuncts both  $Q_q(\overline{m},\overline{k})$  and  $S_{\sigma}(\overline{m},\overline{k})$  with  $\delta(q,\sigma)$  undefined. By Lemma und.2 Thus,  $\chi(M,w,k) \models \alpha(M,w)$ . But since  $(M,w) \models \chi(M,w,k)$ , we have  $\tau(M,w) \models \alpha(M,w)$  and therefore  $\tau(M,w) \to \alpha(M,w)$  is valid.

explanation

To complete the verification of our claim, we also have to establish the reverse direction: if  $\tau(M, w) \to \alpha(M, w)$  is valid, then M does in fact halt when started on input m.

tms:und:ver: lem:halt-if-valid

**Lemma und.5.** If  $\vDash \tau(M, w) \rightarrow \alpha(M, w)$ , then M halts on input w.

*Proof.* Consider the  $\mathcal{L}_M$ -structure  $\mathfrak{M}$  with domain  $\mathbb{N}$  which interprets 0 as 0, ' as the successor function, and < as the less-than relation, and the predicates  $Q_q$  and  $S_\sigma$  as follows:

$$\begin{aligned} Q_q^{\mathfrak{M}} &= \{\langle m, n \rangle : & \text{started on } w \text{, after } n \text{ steps,} \\ M \text{ is in state } q \text{ scanning square } m \end{aligned} \} \\ \mathcal{S}_{\sigma}^{\mathfrak{M}} &= \{\langle m, n \rangle : & \text{started on } w \text{, after } n \text{ steps,} \\ \text{square } m \text{ of } M \text{ contains symbol } \sigma \end{aligned} \}$$

In other words, we construct the structure  $\mathfrak{M}$  so that it describes what M started on input w actually does, step by step. Clearly,  $\mathfrak{M} \models \tau(M, w)$ . If  $\models \tau(M, w) \to \alpha(M, w)$ , then also  $\mathfrak{M} \models \alpha(M, w)$ , i.e.,

$$\mathfrak{M} \vDash \exists x \,\exists y \, (\bigvee_{\langle q, \sigma \rangle \in X} (Q_q(x, y) \land S_{\sigma}(x, y))).$$

As  $|\mathfrak{M}| = \mathbb{N}$ , there must be  $m, n \in \mathbb{N}$  so that  $\mathfrak{M} \models Q_q(\overline{m}, \overline{n}) \land S_{\sigma}(\overline{m}, \overline{n})$  for some q and  $\sigma$  such that  $\delta(q, \sigma)$  is undefined. By the definition of  $\mathfrak{M}$ , this means that M started on input w after n steps is in state q and reading symbol  $\sigma$ , and the transition function is undefined, i.e., M has halted.

## **Photo Credits**

## **Bibliography**