und.1 Verifying the Representation

In order to verify that our representation works, we have to prove two things. First, we have to show that if M halts on input w, then $\tau(M, w) \rightarrow \alpha(M, w)$ is valid. Then, we have to show the converse, i.e., that if $\tau(M, w) \rightarrow \alpha(M, w)$ is valid, then M does in fact eventually halt when run on input w.

The strategy for proving these is very different. For the first result, we have to show that a sentence of first-order logic (namely, $\tau(M, w) \rightarrow \alpha(M, w)$) is valid. The easiest way to do this is to give a derivation. Our proof is supposed to work for all M and w, though, so there isn’t really a single sentence for which we have to give a derivation, but infinitely many. So the best we can do is to prove by induction that, whatever M and w look like, and however many steps it takes M to halt on input w, there will be a derivation of $\tau(M, w) \rightarrow \alpha(M, w)$.

Naturally, our induction will proceed on the number of steps M takes before it reaches a halting configuration. In our inductive proof, we’ll establish that for each step n of the run of M on input w, $\tau(M, w) \models \chi(M, w, n)$, where $\chi(M, w, n)$ correctly describes the configuration of M run on w after n steps. Now if M halts on input w after, say, n steps, $\chi(M, w, n)$ will describe a halting configuration. We’ll also show that $\chi(M, w, n) \models \alpha(M, w)$, whenever $\chi(M, w, n)$ describes a halting configuration. So, if M halts on input w, then for some n, M will be in a halting configuration after n steps. Hence, $\tau(M, w) \models \chi(M, w, n)$ where $\chi(M, w, n)$ describes a halting configuration, and since in that case $\chi(M, w, n) \models \alpha(M, w)$, we get that $T(M, w) \models \alpha(M, w)$, i.e., that $\models \tau(M, w) \rightarrow \alpha(M, w)$.

The strategy for the converse is very different. Here we assume that $\models \tau(M, w) \rightarrow \alpha(M, w)$ and have to prove that M halts on input w. From the hypothesis we get that $\tau(M, w) \models \alpha(M, w)$, i.e., $\alpha(M, w)$ is true in every structure in which $\tau(M, w)$ is true: its domain will be \mathbb{N}, and the interpretation of all the Q_q and S_σ will be given by the configurations of M during a run on input w. So, e.g., $\mathcal{M} \models Q_q(\overline{m}, \overline{n})$ iff T, when run on input w for n steps, is in state q and scanning square m. Now since $\tau(M, w) \models \alpha(M, w)$ by hypothesis, and since $\mathcal{M} \models \tau(M, w)$ by construction, $\mathcal{M} \models \alpha(M, w)$. But $\mathcal{M} \models \alpha(M, w)$ iff there is some $n \in |\mathcal{M}| = \mathbb{N}$ so that M, run on input w, is in a halting configuration after n steps.

Definition und.1. Let $\chi(M, w, n)$ be the sentence

$$Q_q(\overline{m}, \overline{n}) \land S_{\sigma_0}(\overline{0}, \overline{n}) \land \cdots \land S_{\sigma_k}(\overline{k}, \overline{n}) \land \forall x (\overline{k} < x \rightarrow S_{\sigma_0}(x, \overline{n}))$$

where q is the state of M at time n, M is scanning square m at time n, square i contains symbol σ_i at time n for $0 \leq i \leq k$ and k is the right-most non-blank square of the tape at time 0, or the right-most square the tape head has visited after n steps, whichever is greater.

Lemma und.2. If M run on input w is in a halting configuration after n steps, then $\chi(M, w, n) \models \alpha(M, w)$.
Proof. Suppose that M halts for input w after n steps. There is some state q, square m, and symbol σ such that:

1. After n steps, M is in state q scanning square m on which σ appears.
2. The transition function $\delta(q, \sigma)$ is undefined.

$\chi(M, w, n)$ is the description of this configuration and will include the clauses $Q_q(m, n)$ and $S_\sigma(m, n)$. These clauses together imply $\alpha(M, w)$:

$$\exists x \exists y \left(\bigvee_{(q, \sigma) \in X} (Q_q(x, y) \land S_\sigma(x, y)) \right)$$

since $Q_{q'}(\overline{m}, \overline{n}) \land S_{\sigma'}(\overline{m}, \overline{n}) \models \bigvee_{(q, \sigma) \in X} (Q_q(\overline{m}, \overline{n}) \land S_\sigma(\overline{m}, \overline{n}))$, as $(q', \sigma') \in X$. \hfill \Box

So if M halts for input w, then there is some n such that $\chi(M, w, n) \models \alpha(M, w)$. We will now show that for any time n, $\tau(M, w) \models \chi(M, w, n)$.

Lemma und.3. For each n, if M has not halted after n steps, $\tau(M, w) \models \chi(M, w, n)$.

Proof. Induction basis: If $n = 0$, then the conjuncts of $\chi(M, w, 0)$ are also conjuncts of $\tau(M, w)$, so entailed by it.

Inductive hypothesis: If M has not halted before the nth step, then $\tau(M, w) \models \chi(M, w, n)$. We have to show that (unless $\chi(M, w, n)$ describes a halting configuration), $\tau(M, w) \models \chi(M, w, n + 1)$.

Suppose $n > 0$ and after n steps, M started on w is in state q scanning square m. Since M does not halt after n steps, there must be an instruction of one of the following three forms in the program of M:

1. $\delta(q, \sigma) = \langle q', \sigma', R \rangle$
2. $\delta(q, \sigma) = \langle q', \sigma', L \rangle$
3. $\delta(q, \sigma) = \langle q', \sigma', N \rangle$

We will consider each of these three cases in turn.

1. Suppose there is an instruction of the form (1). By ????, this means that

$$\forall x \forall y \left((Q_q(x, y) \land S_\sigma(x, y)) \rightarrow (Q_{q'}(x', y') \land S_{\sigma'}(x, y')) \right)$$

is a conjunct of $\tau(M, w)$. This entails the following sentence (universal instantiation, \overline{m} for x and \overline{n} for y):

$$(Q_q(\overline{m}, \overline{n}) \land S_\sigma(\overline{m}, \overline{n})) \rightarrow (Q_{q'}(\overline{m'}, \overline{n'}) \land S_{\sigma'}(\overline{m}, \overline{n}) \land \varphi(\overline{m}, \overline{n})).$$
By induction hypothesis, $\tau(M, w) \vdash \chi(M, w, n)$, i.e.,

$$Q_q(m, n) \land S_0(m, n) \land \cdots \land S_{k}(k, n) \land \forall x (k < x \rightarrow S_0(x, n))$$

Since after n steps, tape square m contains σ, the corresponding conjunct is $S_\sigma(m, n)$, so this entails:

$$Q_q(m, n) \land S_\sigma(m, n)$$

We now get

$$Q_q'(m', n') \land S_{\sigma'}(m', n') \land S_0'(m', n') \land \cdots \land S_{\sigma_k}(k, n') \land \forall x (k < x \rightarrow S_0(x, n'))$$

as follows: The first line comes directly from the consequent of the preceding conditional, by modus ponens. Each conjunct in the middle line—which excludes $S_{\sigma_m}(m, n')$—follows from the corresponding conjunct in $\chi(M, w, n)$ together with $\varphi(m, n)$. If $m < k$, $\tau(M, w) \vdash m < k$ (??) and by transitivity of $<$, we have $\forall x (k < x \rightarrow m < x)$. If $m = k$, then $\forall x (k < x \rightarrow m < k)$ by logic alone. The last line then follows from the corresponding conjunct in $\chi(M, w, n)$, $\forall x (k < x \rightarrow m < k)$, and $\varphi(m, n)$. If $m < k$, this already is $\chi(M, w, n+1)$.

Now suppose $m = k$. In that case, after $n + 1$ steps, the tape head has also visited square $k + 1$, which now is the right-most square visited. So $\chi(M, w, n + 1)$ has a new conjunct, $S_0(k, n')$, and the last conjunct is $\forall x (k < x \rightarrow S_0(x, n'))$. We have to verify that these two sentences are also implied.

We already have $\forall x (k < x \rightarrow S_0(x, n'))$. In particular, this gives us $k < k' \rightarrow S_0(k, n')$. From the axiom $\forall x x < x'$ we get $k < k'$. By modus ponens, $S_0(k, n')$ follows.

Also, since $\tau(M, w) \vdash k < k'$, the axiom for transitivity of $<$ gives us $\forall x (k < x \rightarrow S_0(x, n'))$. (We leave the verification of this as an exercise.)

2. Suppose there is an instruction of the form (2). Then, by ???,

$$\forall x \forall y ((Q_q(x', y) \land S_\sigma(x', y)) \rightarrow
(Q_q'(x, y') \land S_{\sigma'}(x', y') \land \varphi(x, y))) \land
\forall y ((Q_q(o, y) \land S_\sigma(o, y)) \rightarrow
(Q_q'(o, y') \land S_{\sigma'}(o, y') \land \varphi(o, y)))$$
is a conjunct of $\tau(M, w)$. If $m > 0$, then let $l = m - 1$ (i.e., $m = l + 1$). The first conjunct of the above sentence entails the following:

$$(Q_q(l', \pi) \land S_\sigma(l', \pi)) \rightarrow (Q_{q'}(l, \pi') \land S_\sigma(l', \pi') \land \varphi(l, \pi))$$

Otherwise, let $l = m = 0$ and consider the following sentence entailed by the second conjunct:

$$((Q_q(0, \pi) \land S_\sigma(0, \pi)) \rightarrow (Q_{q'}(0, \pi') \land S_\sigma(0, \pi') \land \varphi(0, \pi)))$$

Either sentence implies

$$Q_{q'}(l, \pi') \land S_\sigma(\overline{m}, \pi') \land S_{\sigma_0}(l', \pi') \land \cdots \land S_{\sigma_k}(l', \pi') \land \forall x (\overline{k} < x \rightarrow \overline{S_0(x, \pi')})$$

as before. (Note that in the first case, $l' \equiv l + 1 \equiv m$ and in the second case $l \equiv 0$.) But this just is $\chi(M, w, n + 1)$.

3. Case (3) is left as an exercise.

We have shown that for any n, $\tau(M, w) \models \chi(M, w, n)$. □

Problem und.1. Complete case (3) of the proof of Lemma und.3.

Problem und.2. Give a derivation of $S_\sigma(l, \pi')$ from $S_\sigma(l, \pi)$ and $\varphi(m, n)$ (assuming $i \neq m$, i.e., either $i < m$ or $m < i$).

Problem und.3. Give a derivation of $\forall x (\overline{k} < x \rightarrow \overline{S_0(x, \pi')})$ from $\forall x (\overline{k} < x \rightarrow \overline{S_0(x, \pi')})$, $\forall x \forall y (x < y \land y < z \rightarrow x < z)$).

Lemma und.4. If M halts on input w, then $\tau(M, w) \rightarrow \alpha(M, w)$ is valid.

Proof. By Lemma und.3, we know that, for any time n, the description $\chi(M, w, n)$ of the configuration of M at time n is entailed by $\tau(M, w)$. Suppose M halts after k steps. At that point, it will be scanning square m, for some $m \in \mathbb{N}$. Then $\chi(M, w, k)$ describes a halting configuration of M, i.e., it contains as conjuncts both $Q_q(\overline{m}, \overline{\pi})$ and $S_\sigma(\overline{m}, \overline{\pi})$ with $\delta(q, \sigma)$ undefined. Thus, by Lemma und.2, $\chi(M, w, k) \models \alpha(M, w)$. But since $\tau(M, w) \models \chi(M, w, k)$, we have $\tau(M, w) \models \alpha(M, w)$ and therefore $\tau(M, w) \rightarrow \alpha(M, w)$ is valid. □

explanation

To complete the verification of our claim, we also have to establish the reverse direction: if $\tau(M, w) \rightarrow \alpha(M, w)$ is valid, then M does in fact halt when started on input w.

verification rev. c9d2ed6 (2023-09-14) by OLP / CC–BY
Lemma und.5. If $\models \tau(M, w) \rightarrow \alpha(M, w)$, then M halts on input w.

Proof. Consider the L_M-structure \mathfrak{M} with domain \mathbb{N} which interprets 0 as 0, $'$ as the successor function, and $<$ as the less-than relation, and the predicates Q_q and S_σ as follows:

\[
Q_q^M = \{ (m, n) : \text{started on w, after n steps, } M \text{ is in state q scanning square m} \} \\
S_\sigma^M = \{ (m, n) : \text{started on w, after n steps, square m of M contains symbol σ} \}
\]

In other words, we construct the structure \mathfrak{M} so that it describes what M started on input w actually does, step by step. Clearly, $\mathfrak{M} \models \tau(M, w)$. If $\models \tau(M, w) \rightarrow \alpha(M, w)$, then also $\mathfrak{M} \models \alpha(M, w)$, i.e.,

\[
\mathfrak{M} \models \exists x \exists y \left(\bigvee_{(q, \sigma) \in X} (Q_q(x, y) \wedge S_\sigma(x, y)) \right).
\]

As $|\mathfrak{M}| = \mathbb{N}$, there must be $m, n \in \mathbb{N}$ so that $\mathfrak{M} \models Q_q(m, n) \wedge S_\sigma(m, n)$ for some q and σ such that $\delta(q, \sigma)$ is undefined. By the definition of \mathfrak{M}, this means that M started on input w after n steps is in state q and reading symbol σ, and the transition function is undefined, i.e., M has halted. \square

Photo Credits

Bibliography