
Part I

Turing Machines

1

The material in this part is a basic and informal introduction to Turing
machines. It needs more examples and exercises, and perhaps information
on available Turing machine simulators. The proof of the unsolvability of
the decision problem uses a successor function, hence all models are infi-
nite. One could strengthen the result by using a successor relation instead.
There probably are subtle oversights; use these as checks on students’ at-
tention (but also file issues!).

2 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 1

Turing Machine Computations

1.1 Introduction

tur:mac:int:
sec

What does it mean for a function, say, from N to N to be computable? Among
the first answers, and the most well known one, is that a function is computable
if it can be computed by a Turing machine. This notion was set out by Alan
Turing in 1936. Turing machines are an example of a model of computation—
they are a mathematically precise way of defining the idea of a “computational
procedure.” What exactly that means is debated, but it is widely agreed that
Turing machines are one way of specifying computational procedures. Even
though the term “Turing machine” evokes the image of a physical machine
with moving parts, strictly speaking a Turing machine is a purely mathematical
construct, and as such it idealizes the idea of a computational procedure. For
instance, we place no restriction on either the time or memory requirements
of a Turing machine: Turing machines can compute something even if the
computation would require more storage space or more steps than there are
atoms in the universe.

explanationIt is perhaps best to think of a Turing machine as a program for a special
kind of imaginary mechanism. This mechanism consists of a tape and a read-
write head. In our version of Turing machines, the tape is infinite in one
direction (to the right), and it is divided into squares, each of which may contain
a symbol from a finite alphabet. Such alphabets can contain any number of
different symbols, but we will mainly make do with three: ▷, 0, and 1. When
the mechanism is started, the tape is empty (i.e., each square contains the
symbol 0) except for the leftmost square, which contains ▷, and a finite number
of squares which contain the input. At any time, the mechanism is in one of a
finite number of states. At the outset, the head scans the leftmost square and
in a specified initial state. At each step of the mechanism’s run, the content
of the square currently scanned together with the state the mechanism is in
and the Turing machine program determine what happens next. The Turing
machine program is given by a partial function which takes as input a state q
and a symbol σ and outputs a triple ⟨q′, σ′, D⟩. Whenever the mechanism is in

3

Figure 1.1: A Turing machine executing its program.

tur:mac:int:

fig:tm

state q and reads symbol σ, it replaces the symbol on the current square with
σ′, the head moves left, right, or stays put according to whether D is L, R, or
N , and the mechanism goes into state q′.

For instance, consider the situation in Figure 1.1. The visible part of the
tape of the Turing machine contains the end-of-tape symbol ▷ on the leftmost
square, followed by three 1’s, a 0, and four more 1’s. The head is reading the
third square from the left, which contains a 1, and is in state q1—we say “the
machine is reading a 1 in state q1.” If the program of the Turing machine
returns, for input ⟨q1, 1⟩, the triple ⟨q2, 0, N⟩, the machine would now replace
the 1 on the third square with a 0, leave the read/write head where it is, and
switch to state q2. If then the program returns ⟨q3, 0, R⟩ for input ⟨q2, 0⟩, the
machine would now overwrite the 0 with another 0 (effectively, leaving the
content of the tape under the read/write head unchanged), move one square
to the right, and enter state q3. And so on.

We say that the machine halts when it encounters some state, qn, and sym-
bol, σ such that there is no instruction for ⟨qn, σ⟩, i.e., the transition function
for input ⟨qn, σ⟩ is undefined. In other words, the machine has no instruction
to carry out, and at that point, it ceases operation. Halting is sometimes rep-
resented by a specific halt state h. This will be demonstrated in more detail
later on.

digression The beauty of Turing’s paper, “On computable numbers,” is that he presents
not only a formal definition, but also an argument that the definition captures
the intuitive notion of computability. From the definition, it should be clear
that any function computable by a Turing machine is computable in the intu-
itive sense. Turing offers three types of argument that the converse is true, i.e.,
that any function that we would naturally regard as computable is computable
by such a machine. They are (in Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

3. Giving examples of large classes of numbers which are computable.

4 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Our goal is to try to define the notion of computability “in principle,” i.e.,
without taking into account practical limitations of time and space. Of course,
with the broadest definition of computability in place, one can then go on
to consider computation with bounded resources; this forms the heart of the
subject known as “computational complexity.”

Historical Remarks Alan Turing invented Turing machines in 1936. While
his interest at the time was the decidability of first-order logic, the paper has
been described as a definitive paper on the foundations of computer design.
In the paper, Turing focuses on computable real numbers, i.e., real numbers
whose decimal expansions are computable; but he notes that it is not hard
to adapt his notions to computable functions on the natural numbers, and
so on. Notice that this was a full five years before the first working general
purpose computer was built in 1941 (by the German Konrad Zuse in his par-
ent’s living room), seven years before Turing and his colleagues at Bletchley
Park built the code-breaking Colossus (1943), nine years before the American
ENIAC (1945), twelve years before the first British general purpose computer—
the Manchester Small-Scale Experimental Machine—was built in Manchester
(1948), and thirteen years before the Americans first tested the BINAC (1949).
The Manchester SSEM has the distinction of being the first stored-program
computer—previous machines had to be rewired by hand for each new task.

1.2 Representing Turing Machines

tur:mac:rep:
sec

explanationTuring machines can be represented visually by state diagrams. The diagrams
are composed of state cells connected by arrows. Unsurprisingly, each state cell
represents a state of the machine. Each arrow represents an instruction that
can be carried out from that state, with the specifics of the instruction written
above or below the appropriate arrow. Consider the following machine, which
has only two internal states, q0 and q1, and one instruction:

q0start q1
0, 1, R

Recall that the Turing machine has a read/write head and a tape with the
input written on it. The instruction can be read as if reading a 0 in state q0,
write a 1, move right, and move to state q1. This is equivalent to the transition
function mapping ⟨q0, 0⟩ to ⟨q1, 1, R⟩.

Example 1.1. Even Machine: The following Turing machine halts if, and
only if, there are an even number of 1’s on the tape (under the assumption

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

that all 1’s come before the first 0 on the tape).

q0start q1

1, 1, R

0, 0, R

1, 1, R

The state diagram corresponds to the following transition function:

δ(q0, 1) = ⟨q1, 1, R⟩,
δ(q1, 1) = ⟨q0, 1, R⟩,
δ(q1, 0) = ⟨q1, 0, R⟩

explanation The above machine halts only when the input is an even number of strokes.
Otherwise, the machine (theoretically) continues to operate indefinitely. For
any machine and input, it is possible to trace through the configurations of
the machine in order to determine the output. We will give a formal definition
of configurations later. For now, we can intuitively think of configurations as
a series of diagrams showing the state of the machine at any point in time
during operation. Configurations show the content of the tape, the state of the
machine and the location of the read/write head.

Let us trace through the configurations of the even machine if it is started
with an input of four 1’s. In this case, we expect that the machine will halt.
We will then run the machine on an input of three 1’s, where the machine will
run forever.

The machine starts in state q0, scanning the leftmost 1. We can represent
the initial state of the machine as follows:

▷101110 . . .

The above configuration is straightforward. As can be seen, the machine starts
in state one, scanning the leftmost 1. This is represented by a subscript of the
state name on the first 1. The applicable instruction at this point is δ(q0, 1) =
⟨q1, 1, R⟩, and so the machine moves right on the tape and changes to state q1.

▷111110 . . .

Since the machine is now in state q1 scanning a 1, we have to “follow” the
instruction δ(q1, 1) = ⟨q0, 1, R⟩. This results in the configuration

▷111010 . . .

As the machine continues, the rules are applied again in the same order, re-
sulting in the following two configurations:

▷111110 . . .

6 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

▷111100 . . .

The machine is now in state q0 scanning a 0. Based on the transition diagram,
we can easily see that there is no instruction to be carried out, and thus the
machine has halted. This means that the input has been accepted.

Suppose next we start the machine with an input of three 1’s. The first few
configurations are similar, as the same instructions are carried out, with only
a small difference of the tape input:

▷10110 . . .

▷11110 . . .

▷11100 . . .

▷11101 . . .

The machine has now traversed past all the 1’s, and is reading a 0 in state q1. As
shown in the diagram, there is an instruction of the form δ(q1, 0) = ⟨q1, 0, R⟩.
Since the tape is filled with 0 indefinitely to the right, the machine will continue
to execute this instruction forever, staying in state q1 and moving ever further
to the right. The machine will never halt, and does not accept the input.

explanationIt is important to note that not all machines will halt. If halting means that
the machine runs out of instructions to execute, then we can create a machine
that never halts simply by ensuring that there is an outgoing arrow for each
symbol at each state. The even machine can be modified to run indefinitely by
adding an instruction for scanning a 0 at q0.

Example 1.2.

q0start q1

1, 1, R

0, 0, R 0, 0, R

1, 1, R

explanationMachine tables are another way of representing Turing machines. Machine
tables have the tape alphabet displayed on the x-axis, and the set of machine
states across the y-axis. Inside the table, at the intersection of each state and
symbol, is written the rest of the instruction—the new state, new symbol, and
direction of movement. Machine tables make it easy to determine in what
state, and for what symbol, the machine halts. Whenever there is a gap in the
table is a possible point for the machine to halt. Unlike state diagrams and
instruction sets, where the points at which the machine halts are not always
immediately obvious, any halting points are quickly identified by finding the
gaps in the machine table.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

q0start q1 q2

q3q4q5

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, R

0, 1, L

1, 1, L

1, 1, L

0, 0, L

1, 1, L

0, 0, R

Figure 1.2: A doubler machine

tur:mac:rep:

fig:doubler
Example 1.3. The machine table for the even machine is:

0 1 ▷
q0 1, q1, R
q1 0, q1, R 1, q0, R

As we can see, the machine halts when scanning a 0 in state q0.

explanation So far we have only considered machines that read and accept input. How-
ever, Turing machines have the capacity to both read and write. An example
of such a machine (although there are many, many examples) is a doubler. A
doubler, when started with a block of n 1’s on the tape, outputs a block of 2n
1’s.

Example 1.4. tur:mac:rep:

ex:doubler

Before building a doubler machine, it is important to come
up with a strategy for solving the problem. Since the machine (as we have
formulated it) cannot remember how many 1’s it has read, we need to come
up with a way to keep track of all the 1’s on the tape. One such way is to
separate the output from the input with a 0. The machine can then erase the
first 1 from the input, traverse over the rest of the input, leave a 0, and write
two new 1’s. The machine will then go back and find the second 1 in the input,
and double that one as well. For each one 1 of input, it will write two 1’s of
output. By erasing the input as the machine goes, we can guarantee that no
1 is missed or doubled twice. When the entire input is erased, there will be
2n 1’s left on the tape. The state diagram of the resulting Turing machine is
depicted in Figure 1.2.

Problem 1.1. Choose an arbitrary input and trace through the configurations
of the doubler machine in Example 1.4.

8 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 1.2. Design a Turing-machine with alphabet {▷, 0, A,B} that ac-
cepts, i.e., halts on, any string of A’s and B’s where the number of A’s is the
same as the number of B’s and all the A’s precede all the B’s, and rejects,
i.e., does not halt on, any string where the number of A’s is not equal to the
number of B’s or the A’s do not precede all the B’s. (E.g., the machine should
accept AABB, and AAABBB, but reject both AAB and AABBAABB.)

Problem 1.3. Design a Turing-machine with alphabet {▷, 0, A,B} that takes
as input any string α of A’s and B’s and duplicates them to produce an output
of the form αα. (E.g. input ABBA should result in output ABBAABBA).

Problem 1.4. Alphabetical?: Design a Turing-machine with alphabet {▷, 0, A,B}
that when given as input a finite sequence of A’s and B’s checks to see if all
the A’s appear to the left of all the B’s or not. The machine should leave the
input string on the tape, and either halt if the string is “alphabetical”, or loop
forever if the string is not.

Problem 1.5. Alphabetizer: Design a Turing-machine with alphabet {▷, 0, A,B}
that takes as input a finite sequence of A’s and B’s rearranges them so that
all the A’s are to the left of all the B’s. (e.g., the sequence BABAA should
become the sequence AAABB, and the sequence ABBABB should become
the sequence AABBBB).

1.3 Turing Machines

tur:mac:tur:
sec

explanationThe formal definition of what constitutes a Turing machine looks abstract, but
is actually simple: it merely packs into one mathematical structure all the
information needed to specify the workings of a Turing machine. This includes
(1) which states the machine can be in, (2) which symbols are allowed to be
on the tape, (3) which state the machine should start in, and (4) what the
instruction set of the machine is.

Definition 1.5 (Turing machine). A Turing machine M is a tuple ⟨Q,Σ, q0, δ⟩
consisting of

1. a finite set of states Q,

2. a finite alphabet Σ which includes ▷ and 0,

3. an initial state q0 ∈ Q,

4. a finite instruction set δ : Q×Σ 7→ Q×Σ × {L,R,N}.

The partial function δ is also called the transition function of M .

explanationWe assume that the tape is infinite in one direction only. For this reason
it is useful to designate a special symbol ▷ as a marker for the left end of the
tape. This makes it easier for Turing machine programs to tell when they’re

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

“in danger” of running off the tape. We could assume that this symbol is never
overwritten, i.e., that δ(q, ▷) = ⟨q′, ▷, x⟩ if δ(q, ▷) is defined. Some textbooks
do this, we do not. You can simply be careful when constructing your Turing
machine that it never overwrites ▷. Moreover, there are cases where allowing
such overwriting provides some convenient flexibility.

Example 1.6. Even Machine: The even machine is formally the quadruple
⟨Q,Σ, q0, δ⟩ where

Q = {q0, q1}
Σ = {▷, 0, 1},

δ(q0, 1) = ⟨q1, 1, R⟩,
δ(q1, 1) = ⟨q0, 1, R⟩,
δ(q1, 0) = ⟨q1, 0, R⟩.

1.4 Configurations and Computations

cmp:tur:con:
sec

explanation Recall tracing through the configurations of the even machine earlier. The
imaginary mechanism consisting of tape, read/write head, and Turing machine
program is really just an intuitive way of visualizing what a Turing machine
computation is. Formally, we can define the computation of a Turing machine
on a given input as a sequence of configurations—and a configuration in turn
is a sequence of symbols (corresponding to the contents of the tape at a given
point in the computation), a number indicating the position of the read/write
head, and a state. Using these, we can define what the Turing machine M
computes on a given input.

Definition 1.7 (Configuration). A configuration of Turing machine M =
⟨Q,Σ, q0, δ⟩ is a triple ⟨C,m, q⟩ where

1. C ∈ Σ∗ is a finite sequence of symbols from Σ,

2. m ∈ N is a number < len(C), and

3. q ∈ Q

Intuitively, the sequence C is the content of the tape (symbols of all squares
from the leftmost square to the last non-blank or previously visited square),
m is the number of the square the read/write head is scanning (beginning with
0 being the number of the leftmost square), and q is the current state of the
machine.

explanation The potential input for a Turing machine is a sequence of symbols, usually
a sequence that encodes a number in some form. The initial configuration of
the Turing machine is that configuration in which we start the Turing machine
to work on that input: the tape contains the tape end marker immediately
followed by the input written on the squares to the right, the read/write head

10 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

is scanning the leftmost square of the input (i.e., the square to the right of the
left end marker), and the mechanism is in the designated start state q0.

Definition 1.8 (Initial configuration). The initial configuration of M for
input I ∈ Σ∗ is

⟨▷ ⌢ I, 1, q0⟩.

explanationThe ⌢ symbol is for concatenation—the input string begins immediately
to the left end marker.

Definition 1.9. We say that a configuration ⟨C,m, q⟩ yields the configuration
⟨C ′,m′, q′⟩ in one step (according to M), iff

1. the m-th symbol of C is σ,

2. the instruction set of M specifies δ(q, σ) = ⟨q′, σ′, D⟩,

3. the m-th symbol of C ′ is σ′, and

4. a) D = L and m′ = m− 1 if m > 0, otherwise m′ = 0, or

b) D = R and m′ = m+ 1, or

c) D = N and m′ = m,

5. if m′ = len(C), then len(C ′) = len(C) + 1 and the m′-th symbol of C ′

is 0. Otherwise len(C ′) = len(C).

6. for all i such that i < len(C) and i ̸= m, C ′(i) = C(i),

Definition 1.10.cmp:tur:con:

defn:run-output

A run of M on input I is a sequence Ci of configurations
ofM , where C0 is the initial configuration ofM for input I, and each Ci yields
Ci+1 in one step.

We say that M halts on input I after k steps if Ck = ⟨C,m, q⟩, the mth
symbol of C is σ, and δ(q, σ) is undefined. In that case, the output of M
for input I is O, where O is a string of symbols not ending in 0 such that
C = ▷ ⌢ O ⌢ 0j for some i, j ∈ N.

explanationAccording to this definition, the output O of M always ends in a symbol
other than 0, or, if at time k the entire tape is filled with 0 (except for the
leftmost ▷), O is the empty string.

1.5 Unary Representation of Numbers

tur:mac:una:
sec

explanationTuring machines work on sequences of symbols written on their tape. Depend-
ing on the alphabet a Turing machine uses, these sequences of symbols can
represent various inputs and outputs. Of particular interest, of course, are
Turing machines which compute arithmetical functions, i.e., functions of nat-
ural numbers. A simple way to represent positive integers is by coding them
as sequences of a single symbol 1. If n ∈ N, let 1n be the empty sequence if
n = 0, and otherwise the sequence consisting of exactly n 1’s.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

q0start q1 q2
0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, N

Figure 1.3: A machine computing f(x, y) = x+ y

tur:mac:una:

fig:adder

Definition 1.11 (Computation). A Turing machine M computes the func-
tion f : Nk → N iff M halts on input

1n101n20 . . . 01nk

with output 1f(n1,...,nk).

Problem 1.6. Give a definition for when a Turing machine M computes the
function f : Nk → Nm.

Example 1.12. tur:mac:una:

ex:adder

Addition: Let’s build a machine that computes the function
f(n,m) = n+m. This requires a machine that starts with two blocks of 1’s of
length n and m on the tape, and halts with one block consisting of n+m 1’s.
The two input blocks of 1’s are separated by a 0, so one method would be to
write a stroke on the square containing the 0, and erase the last 1.

Problem 1.7. Trace through the configurations of the machine from Exam-
ple 1.12 for input ⟨3, 2⟩. What happens if the machine computes 0 + 0?

explanation In Example 1.4, we gave an example of a Turing machine that takes as input
a sequence of 1’s and halts with a sequence of twice as many 1’s on the tape—
the doubler machine. However, because the output contains 0’s to the left of
the doubled block of 1’s, it does not actually compute the function f(x) = 2x,
as you might have assumed. We’ll describe two ways of fixing that.

Example 1.13. The machine in Figure 1.4 computes the function f(x) = 2x.
Instead of erasing the input and writing two 1’s at the far right for every 1 in
the input as the machine from Example 1.4 does, this machine adds a single 1
to the right for every 1 in the input. It has to keep track of where the input
ends, so it leaves a 0 between the input and the added strokes, which it fills
with a 1 at the very end. And we have to “remember” where we are in the
input, so we temporarily replace a 1 in the input block by a 0.

Example 1.14. tur:mac:una:
ex:mover

A second possibility for computing f(x) = 2x is to keep the
original doubler machine, but add states and instructions at the end which
move the doubled block of strokes to the far left of the tape. The machine in
Figure 1.5 does just this last part: started on a tape consisting of a block of 0’s

12 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

q0start

q1

q2 q3

q4

q5

q6

q7

q8

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, L

1, 1, L

0, 0, L

1, 1, L

1, 1, L

0, 1, R

0,
1,
R

0, 1, R

1, 1, R

0, 0, L

1, 0, N

Figure 1.4: A machine computing f(x) = 2x

tur:mac:una:

fig:doubler-disc

followed by a block of 1’s (and the head positioned anywhere in the block of 0’s),
it erases the 1’s one at a time and writes them at the beginning of the tape. In
order to be able to tell when it is done, it first marks the end of the block of
1’s with a ▷ symbol, which gets deleted at the end. We’ve started numbering
the states at q6, so they can be added to the doubler machine. All you’ll need
is an additional instruction δ(q5, 0) = ⟨q6, 0, N⟩, i.e., an arrow from q5 to q6
labelled 0, 0, N . (There is one subtle problem: the resulting machine does not
work for input x = 0. We’ll leave this as an exercise.)

Problem 1.8. In Example 1.14 we described a machine consisting of a com-
bination of the doubler machine from Figure 1.4 and the mover machine from
Figure 1.5. What happens if you start this combined machine on input x = 0,
i.e., on an empty tape? How would you fix the machine so that in this case the
machine halts with output 2x = 0? (You should be able to do this by adding
one state and one transition.)

Problem 1.9. Subtraction: Design a Turing machine that when given an in-
put of two non-empty strings of strokes of length n and m, where n > m,
computes the function f(n,m) = n−m.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

q6start q7 q8

q9q10q11

q12 q13 q14

0, 0, R

0, 0, R

1, 1, R

1, 1, R

0, ▷, L

1, 1, L
0, 0, R

1, 0, L

0, 0, L

▷, ▷,R
1, 1, R

0, 1, R

0, 0, R

1, 0, L

▷, 0, N

Figure 1.5: Moving a block of 1’s to the left

tur:mac:una:

fig:mover
Problem 1.10. Equality: Design a Turing machine to compute the following
function:

equality(n,m) =

{
1 if n = m

0 if n ̸= m

where n and m ∈ Z+.

Problem 1.11. Design a Turing machine to compute the function min(x, y)
where x and y are positive integers represented on the tape by strings of 1’s
separated by a 0. You may use additional symbols in the alphabet of the
machine.

The function min selects the smallest value from its arguments, so min(3, 5) =
3, min(20, 16) = 16, and min(4, 4) = 4, and so on.

Definition 1.15. A Turing machineM computes the partial function f : Nk 7→
N iff,

1. M halts on input 1n1 ⌢ 0 ⌢ . . . ⌢ 0 ⌢ 1nk with output 1m if
f(n1, . . . , nk) = m.

2. M does not halt at all, or with an output that is not a single block of 1’s
if f(n1, . . . , nk) is undefined.

14 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.6 Halting States

tur:mac:hal:
sec

explanationAlthough we have defined our machines to halt only when there is no instruction
to carry out, common representations of Turing machines have a dedicated
halting state h, such that h ∈ Q.

The idea behind a halting state is simple: when the machine has finished
operation (it is ready to accept input, or has finished writing the output), it
goes into a state h where it halts. Some machines have two halting states, one
that accepts input and one that rejects input.

Example 1.16. Halting States. To elucidate this concept, let us begin with an
alteration of the even machine. Instead of having the machine halt in state q0 if
the input is even, we can add an instruction to send the machine into a halting
state.

q0start q1

h

1, 1, R

0, 0, N

0, 0, R

1, 1, R

Let us further expand the example. When the machine determines that
the input is odd, it never halts. We can alter the machine to include a reject
state by replacing the looping instruction with an instruction to go to a reject
state r.

q0start q1

h r

1, 1, R

0, 0, N 0, 0, N

1, 1, R

explanationAdding a dedicated halting state can be advantageous in cases like this,
where it makes explicit when the machine accepts/rejects certain inputs. How-
ever, it is important to note that no computing power is gained by adding
a dedicated halting state. Similarly, a less formal notion of halting has its
own advantages. The definition of halting used so far in this chapter makes

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

the proof of the Halting Problem intuitive and easy to demonstrate. For this
reason, we continue with our original definition.

1.7 Disciplined Machines

tur:mac:dis:
sec

explanation In section section 1.6, we considered Turing machines that have a single, des-
ignated halting state h—such machines are guaranteed to halt, if they halt
at all, in state h. In this way, machines with a single halting state are more
“disciplined” than we allow Turing machines in general to be. There are other
restrictions we might impose on the behavior of Turing machines. For instance,
we also have not prohibited Turing machines from ever erasing the tape-end
marker on square 0, or to attempt to move left from square 0. (Our definition
states that the head simply stays on square 0 in this case; other definitions
have the machine halt.) It is likewise sometimes desirable to be able to assume
that a Turing machine, if it halts at all, halts on square 1.

Definition 1.17. tur:mac:dis:

defn:disciplined

A Turing machine M is disciplined iff

1. it has a designated single halting state h,

2. it halts, if it halts at all, while scanning square 1,

3. it never erases the ▷ symbol on square 0, and

4. it never attempts to move left from square 0.

explanation We have already discussed that any Turing machine can be changed into
one with the same behavior but with a designated halting state. This is done
simply by adding a new state h, and adding an instruction δ(q, σ) = ⟨h, σ,N⟩
for any pair ⟨q, σ⟩ where the original δ is undefined. It is true, although tedious
to prove, that any Turing machine M can be turned into a disciplined Turing
machine M ′ which halts on the same inputs and produces the same output.
For instance, if the Turing machine halts and is not on square 1, we can add
some instructions to make the head move left until it finds the tape-end marker,
then move one square to the right, then halt. We’ll leave you to think about
how the other conditions can be dealt with.

Example 1.18. In Figure 1.6, we turn the addition machine from Exam-
ple 1.12 into a disciplined machine.

Proposition 1.19. tur:mac:dis:

prop:disciplined

For every Turing machine M , there is a disciplined Tur-
ing machine M ′ which halts with output O if M halts with output O, and does
not halt if M does not halt. In particular, any function f : Nn → N computable
by a Turing machine is also computable by a disciplined Turing machine.

Problem 1.12. Give a disciplined machine that computes f(x) = x+ 1.

Problem 1.13. Find a disciplined machine which, when started on input 1n

produces output 1n ⌢ 0⌢ 1n.

16 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

q0start q1

q2

q3h

0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

▷, ▷,R

Figure 1.6: A disciplined addition machine

tur:mac:dis:

fig:adder-disc
1.8 Combining Turing Machines

tur:mac:cmb:
sec

explanationThe examples of Turing machines we have seen so far have been fairly simple
in nature. But in fact, any problem that can be solved with any modern
programming language can also be solved with Turing machines. To build
more complex Turing machines, it is important to convince ourselves that we
can combine them, so we can build machines to solve more complex problems by
breaking the procedure into simpler parts. If we can find a natural way to break
a complex problem down into constituent parts, we can tackle the problem in
several stages, creating several simple Turing machines and combining them
into one machine that can solve the problem. This point is especially important
when tackling the Halting Problem in the next section.

How do we combine Turing machinesM = ⟨Q,Σ, q0, δ⟩ andM ′ = ⟨Q′, Σ′, q′0, δ
′⟩?

We now use the configuration of the tape after M has halted as the input con-
figuration of a run of machine M ′. To get a single Turing machine M ⌢ M ′

that does this, do the following:

1. Renumber (or relabel) all the states Q′ of M ′ so that M and M ′ have no
states in common (Q ∩Q′ = ∅).

2. The states of M ⌢M ′ are Q ∪Q′.

3. The tape alphabet is Σ ∪Σ′.

4. The start state is q0.

5. The transition function is the function δ′′ given by:

δ′′(q, σ) =


δ(q, σ) if q ∈ Q

δ′(q, σ) if q ∈ Q′

⟨q′0, σ,N⟩ if q ∈ Q and δ(q, σ) is undefined

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 17

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The resulting machine uses the instructions of M when it is in a state q ∈ Q,
the instructions of M ′ when it is in a state q ∈ Q′. When it is in a state q ∈ Q
and is scanning a symbol σ for which M has no transition (i.e., M would have
halted), it enters the start state of M ′ (and leaves the tape contents and head
position as it is).

Note that unless the machine M is disciplined, we don’t know where the
tape head is when M halts, so the halting configuration of M need not have
the head scanning square 1. When combining machines, it’s important to keep
this in mind.

Example 1.20. Combining Machines: We’ll design a machine which, when
started on input consisting of two blocks of 1’s of length n and m, halts with a
single block of 2(m+n) 1’s on the tape. In order to build this machine, we can
combine two machines we are already familiar with: the addition machine, and
the doubler. We begin by drawing a state diagram for the addition machine.

q0start q1 q2
0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, N

Instead of halting in state q2, we want to continue operation in order to double
the output. Recall that the doubler machine erases the first stroke in the input
and writes two strokes in a separate output. Let’s add an instruction to make
sure the tape head is reading the first stroke of the output of the addition
machine.

q0start q1 q2

q3

q4

0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

▷, ▷,R

It is now easy to double the input—all we have to do is connect the doubler
machine onto state q4. This requires renaming the states of the doubler machine
so that they start at q4 instead of q0—this way we don’t end up with two
starting states. The final diagram should look as in Figure 1.7.

18 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

q0start q1 q2

q3

q4 q5 q6

q7q8q9

0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

▷, ▷,R

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, R

0, 1, L

1, 1, L

1, 1, L

0, 0, L

1, 1, L

0, 0, R

Figure 1.7: Combining adder and doubler machines

tur:mac:cmb:

fig:combined

Proposition 1.21. If M and M ′ are disciplined and compute the functions
f : Nk → N and f ′ : N → N, respectively, then M ⌢ M ′ is disciplined and
computes f ′ ◦ f .

Proof. SinceM is disciplined, when it halts with output f(n1, . . . , nk) = m, the
head is scanning square 1. If we now enter the start state of M ′, the machine
will halt with output f ′(m), again scanning square 1. The other conditions of
Definition 1.17 are also satisfied.

Problem 1.14. Give a disciplined Turing machine computing f(x) = x + 2
by taking the machine M from Problem 1.12 and construct M ⌢M .

1.9 Variants of Turing Machines

tur:mac:var:
sec

There are in fact many possible ways to define Turing machines, of which ours
is only one. In some ways, our definition is more liberal than others. We allow
arbitrary finite alphabets, a more restricted definition might allow only two

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 19

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

tape symbols, 1 and 0. We allow the machine to write a symbol to the tape
and move at the same time, other definitions allow either writing or moving. We
allow the possibility of writing without moving the tape head, other definitions
leave out the N “instruction.” In other ways, our definition is more restrictive.
We assumed that the tape is infinite in one direction only, other definitions
allow the tape to be infinite both to the left and the right. In fact, one can
even allow any number of separate tapes, or even an infinite grid of squares.
We represent the instruction set of the Turing machine by a transition function;
other definitions use a transition relation where the machine has more than one
possible instruction in any given situation.

This last relaxation of the definition is particularly interesting. In our
definition, when the machine is in state q reading symbol σ, δ(q, σ) determines
what the new symbol, state, and tape head position is. But if we allow the
instruction set to be a relation between current state-symbol pairs ⟨q, σ⟩ and
new state-symbol-direction triples ⟨q′, σ′, D⟩, the action of the Turing machine
may not be uniquely determined—the instruction relation may contain both
⟨q, σ, q′, σ′, D⟩ and ⟨q, σ, q′′, σ′′, D′⟩. In this case we have a non-deterministic
Turing machine. These play an important role in computational complexity
theory.

There are also different conventions for when a Turing machine halts: we
say it halts when the transition function is undefined, other definitions require
the machine to be in a special designated halting state. We have explained in
section 1.6 why requiring a designated halting state is not a restriction which
impacts what Turing machines can compute. Since the tapes of our Turing
machines are infinite in one direction only, there are cases where a Turing
machine can’t properly carry out an instruction: if it reads the leftmost square
and is supposed to move left. According to our definition, it just stays put
instead of “falling off”, but we could have defined it so that it halts when that
happens. This definition is also equivalent: we could simulate the behavior
of a Turing machine that halts when it attempts to move left from square 0
by deleting every transition δ(q, ▷) = ⟨q′, σ, L⟩—then instead of attempting to
move left on ▷ the machine halts.1

There are also different ways of representing numbers (and hence the input-
output function computed by a Turing machine): we use unary representation,
but you can also use binary representation. This requires two symbols in
addition to 0 and ▷.

Now here is an interesting fact: none of these variations matters as to which
functions are Turing computable. If a function is Turing computable according
to one definition, it is Turing computable according to all of them.

We won’t go into the details of verifying this. Here’s just one example: we
gain no additional computing power by allowing a tape that is infinite in both
directions, or multiple tapes. The reason is, roughly, that a Turing machine

1This doesn’t quite work, since nothing prevents us from writing and reading ▷ on squares
other than square 0 (see Example 1.14). We can get around that by adding a second ▷′ symbol
to use instead for such a purpose.

20 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

with a single one-way infinite tape can simulate multiple or two-way infinite
tapes. E.g., using additional states and instructions, we can “translate” a
program for a machine with multiple tapes or two-way infinite tape into one
with a single one-way infinite tape. The translated machine can use the even
squares for the squares of tape 1 (or the “positive” squares of a two-way infinite
tape) and the odd squares for the squares of tape 2 (or the “negative” squares).

1.10 The Church–Turing Thesis

tur:mac:ctt:
sec

Turing machines are supposed to be a precise replacement for the concept of an
effective procedure. Turing thought that anyone who grasped both the concept
of an effective procedure and the concept of a Turing machine would have the
intuition that anything that could be done via an effective procedure could be
done by Turing machine. This claim is given support by the fact that all the
other proposed precise replacements for the concept of an effective procedure
turn out to be extensionally equivalent to the concept of a Turing machine
—that is, they can compute exactly the same set of functions. This claim is
called the Church–Turing thesis.

Definition 1.22 (Church–Turing thesis). The Church–Turing Thesis states
that anything computable via an effective procedure is Turing computable.

The Church–Turing thesis is appealed to in two ways. The first kind of
use of the Church–Turing thesis is an excuse for laziness. Suppose we have a
description of an effective procedure to compute something, say, in “pseudo-
code.” Then we can invoke the Church–Turing thesis to justify the claim that
the same function is computed by some Turing machine, even if we have not
in fact constructed it.

The other use of the Church–Turing thesis is more philosophically interest-
ing. It can be shown that there are functions which cannot be computed by
Turing machines. From this, using the Church–Turing thesis, one can conclude
that it cannot be effectively computed, using any procedure whatsoever. For
if there were such a procedure, by the Church–Turing thesis, it would follow
that there would be a Turing machine for it. So if we can prove that there is
no Turing machine that computes it, there also can’t be an effective procedure.
In particular, the Church–Turing thesis is invoked to claim that the so-called
halting problem not only cannot be solved by Turing machines, it cannot be
effectively solved at all.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 21

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 2

Undecidability

2.1 Introduction

tur:und:int:
sec

It might seem obvious that not every function, even every arithmetical func-
tion, can be computable. There are just too many, whose behavior is too
complicated. Functions defined from the decay of radioactive particles, for
instance, or other chaotic or random behavior. Suppose we start counting 1-
second intervals from a given time, and define the function f(n) as the number
of particles in the universe that decay in the n-th 1-second interval after that
initial moment. This seems like a candidate for a function we cannot ever hope
to compute.

But it is one thing to not be able to imagine how one would compute such
functions, and quite another to actually prove that they are uncomputable.
In fact, even functions that seem hopelessly complicated may, in an abstract
sense, be computable. For instance, suppose the universe is finite in time—
some day, in the very distant future the universe will contract into a single
point, as some cosmological theories predict. Then there is only a finite (but
incredibly large) number of seconds from that initial moment for which f(n)
is defined. And any function which is defined for only finitely many inputs is
computable: we could list the outputs in one big table, or code it in one very
big Turing machine state transition diagram.

We are often interested in special cases of functions whose values give the
answers to yes/no questions. For instance, the question “is n a prime number?”
is associated with the function

isprime(n) =

{
1 if n is prime

0 otherwise.

We say that a yes/no question can be effectively decided, if the associated
1/0-valued function is effectively computable.

To prove mathematically that there are functions which cannot be effec-
tively computed, or problems that cannot effectively decided, it is essential to
fix a specific model of computation, and show that there are functions it cannot

22

compute or problems it cannot decide. We can show, for instance, that not
every function can be computed by Turing machines, and not every problem
can be decided by Turing machines. We can then appeal to the Church–Turing
thesis to conclude that not only are Turing machines not powerful enough to
compute every function, but no effective procedure can.

The key to proving such negative results is the fact that we can assign
numbers to Turing machines themselves. The easiest way to do this is to enu-
merate them, perhaps by fixing a specific way to write down Turing machines
and their programs, and then listing them in a systematic fashion. Once we
see that this can be done, then the existence of Turing-uncomputable functions
follows by simple cardinality considerations: the set of functions from N to N
(in fact, even just from N to {0, 1}) are non-enumerable, but since we can enu-
merate all the Turing machines, the set of Turing-computable functions is only
denumerable.

We can also define specific functions and problems which we can prove to be
uncomputable and undecidable, respectively. One such problem is the so-called
Halting Problem. Turing machines can be finitely described by listing their
instructions. Such a description of a Turing machine, i.e., a Turing machine
program, can of course be used as input to another Turing machine. So we can
consider Turing machines that decide questions about other Turing machines.
One particularly interesting question is this: “Does the given Turing machine
eventually halt when started on input n?” It would be nice if there were a
Turing machine that could decide this question: think of it as a quality-control
Turing machine which ensures that Turing machines don’t get caught in infinite
loops and such. The interesting fact, which Turing proved, is that there cannot
be such a Turing machine. There cannot be a single Turing machine which,
when started on input consisting of a description of a Turing machine M and
some number n, will always halt with either output 1 or 0 according to whether
M machine would have halted when started on input n or not.

Once we have examples of specific undecidable problems we can use them to
show that other problems are undecidable, too. For instance, one celebrated un-
decidable problem is the question, “Is the first-order formula φ valid?”. There is
no Turing machine which, given as input a first-order formula φ, is guaranteed
to halt with output 1 or 0 according to whether φ is valid or not. Historically,
the question of finding a procedure to effectively solve this problem was called
simply “the” decision problem; and so we say that the decision problem is un-
solvable. Turing and Church proved this result independently at around the
same time, so it is also called the Church–Turing Theorem.

2.2 Enumerating Turing Machines

tur:und:enu:
sec

explanationWe can show that the set of all Turing machines is enumerable. This follows
from the fact that each Turing machine can be finitely described. The set of
states and the tape vocabulary are finite sets. The transition function is a
partial function from Q × Σ to Q × Σ × {L,R,N}, and so likewise can be

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 23

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

q0start q1

1, 1, R

0, 0, R

1, 1, R

sstart h

A,A,R

0, 0, R

A,A,R

Figure 2.1: Variants of the Even machine

tur:und:enu:

fig:variants

1start 2

3, 3, R

2, 2, R

3, 3, R

Figure 2.2: A standard Even machine

tur:und:enu:

fig:standard-even

specified by listing its values for the finitely many argument pairs for which it
is defined.

This is true as far as it goes, but there is a subtle difference. The definition
of Turing machines made no restriction on what elements the set of states and
tape alphabet can have. So, e.g., for every real number, there technically is a
Turing machine that uses that number as a state. However, the behavior of
the Turing machine is independent of which objects serve as states and vocab-
ulary. Consider the two Turing machines in Figure 2.1. These two diagrams
correspond to two machines, M with the tape alphabet Σ = {▷, 0, 1} and set
of states {q0, q1}, and M ′ with alphabet Σ′ = {▷, 0, A} and states {s, h}. But
their instructions are otherwise the same: M will halt on a sequence of n 1’s
iff n is even, and M ′ will halt on a sequence of n A’s iff n is even. All we’ve
done is rename 1 to A, q0 to s, and q1 to h. This example generalizes: we can
think of Turing machines as the same as long as one results from the other
by such a renaming of symbols and states. In fact, we can simply think of
the symbols and states of a Turing machine as positive integers: instead of σ0
think 1, instead of σ1 think 2, etc.; ▷ is 1, 0 is 2, etc. In this way, the Even
machine becomes the machine depicted in Figure 2.2. We might call a Turing

24 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

machine with states and symbols that are positive integers a standard machine,
and only consider standard machines from now on.1

We wanted to show that the set of Turing machines is enumerable, and
with the above considerations in mind, it is enough to show that the set of
standard Turing machines is enumerable. Suppose we are given a standard
Turing machine M = ⟨Q,Σ, q0, δ⟩. How could we describe it using a finite
string of positive integers? We’ll first list the number of states, the states
themselves, the number of symbols, the symbols themselves, and the starting
state. (Remember, all of these are positive integers, since M is a standard
machine.) What about δ? The set of possible arguments, i.e., pairs ⟨q, σ⟩, is
finite, since Q and Σ are finite. So the information in δ is simply the finite list
of all 5-tuples ⟨q, σ, q′, σ′, d⟩ where δ(q, σ) = ⟨q′, σ′, D⟩, and d is a number that
codes the direction D (say, 1 for L, 2 for R, and 3 for N).

In this way, every standard Turing machine can be described by a finite list
of positive integers, i.e., as a sequence sM ∈ (Z+)∗. For instance, the standard
Even machine is coded by the sequence

2, 1, 2︸︷︷︸
Q

, 3,

Σ︷ ︸︸ ︷
1, 2, 3, 1, 1, 3, 2, 3, 2︸ ︷︷ ︸

δ(1,3)=⟨2,3,R⟩

,

δ(2,2)=⟨2,2,R⟩︷ ︸︸ ︷
2, 2, 2, 2, 2 , 2, 3, 1, 3, 2︸ ︷︷ ︸

δ(2,3)=⟨1,3,R⟩

.

Theorem 2.1. There are functions from N to N which are not Turing com-
putable.

Proof. We know that the set of finite sequences of positive integers (Z+)∗ is
enumerable (??). This gives us that the set of descriptions of standard Turing
machines, as a subset of (Z+)∗, is itself enumerable. Every Turing computable
function N to N is computed by some (in fact, many) Turing machines. By
renaming its states and symbols to positive integers (in particular, ▷ as 1, 0 as 2,
and 1 as 3) we can see that every Turing computable function is computed by
a standard Turing machine. This means that the set of all Turing computable
functions from N to N is also enumerable.

On the other hand, the set of all functions from N to N is not enumer-
able (??). If all functions were computable by some Turing machine, we could
enumerate the set of all functions by listing all the descriptions of Turing ma-
chines that compute them. So there are some functions that are not Turing
computable.

Problem 2.1. Can you think of a way to describe Turing machines that does
not require that the states and alphabet symbols are explicitly listed? You
may define your own notion of “standard” machine, but say something about
why every Turing machine can be computed by a “standard” machine in your
new sense.

1The terminology “standard machine” is not standard.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 25

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.3 Universal Turing Machines

tur:und:uni:
sec

In section 2.2 we discussed how every Turing machine can be described by a
finite sequence of integers. This sequence encodes the states, alphabet, start
state, and instructions of the Turing machine. We also pointed out that the
set of all of these descriptions is enumerable. Since the set of such descriptions
is denumerable, this means that there is a surjective function from N to these
descriptions. Such a surjective function can be obtained, for instance, using
Cantor’s zig-zag method. It gives us a way of enumerating all (descriptions) of
Turing machines. If we fix one such enumeration, it now makes sense to talk
of the 1st, 2nd, . . . , eth Turing machine. These numbers are called indices.

Definition 2.2. If M is the eth Turing machine (in our fixed enumeration),
we say that e is an index of M . We write Me for the eth Turing machine.

A machine may have more than one index, e.g., two descriptions of M
may differ in the order in which we list its instructions, and these different
descriptions will have different indices.

Importantly, it is possible to give the enumeration of Turing machine de-
scriptions in such a way that we can effectively compute the description of M
from its index, and to effectively compute an index of a machine M from its
description. By the Church–Turing thesis, it is then possible to find a Turing
machine which recovers the description of the Turing machine with index e
and writes the corresponding description on its tape as output. The descrip-
tion would be a sequence of blocks of 1’s (representing the positive integers in
the sequence describing Me).

Given this, it now becomes natural to ask: what functions of Turing machine
indices are themselves computable by Turing machines? What properties of
Turing machine indices can be decided by Turing machines? An example: the
function that maps an index e to the number of states the Turing machine with
index e has, is computable by a Turing machine. Here’s what such a Turing
machine would do: started on a tape containing a single block of e 1’s, it
would first decode e into its description. The description is now represented by
a sequence of blocks of 1’s on the tape. Since the first element in this sequence
is the number of states. So all that has to be done now is to erase everything
but the first block of 1’s and then halt.

A remarkable result is the following:

Theorem 2.3. tur:und:uni:

thm:universal-tm

There is a universal Turing machine U which, when started
on input ⟨e, n⟩

1. halts iff Me halts on input n, and

2. if Me halts with output m, so does U .

U thus computes the function f : N×N 7→ N given by f(e, n) = m if Me started
on input n halts with output m, and undefined otherwise.

26 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. To actually produce U is basically impossible, since it is an extremely
complicated machine. But we can describe in outline how it works, and then
invoke the Church–Turing thesis. When it starts, U ’s tape contains a block of e
1’s followed by a block of n 1’s. It first “decodes” the index e to the right of the
input n. This produces a list of numbers (i.e., blocks of 1’s separated by 0’s)
that describes the instructions of machineMe. U then writes the number of the
start state of Me and the number 1 on the tape to the right of the description
of Me. (Again, these are represented in unary, as blocks of 1’s.) Next, it copies
the input (block of n 1’s) to the right—but it replaces each 1 by a block of three
1’s (remember, the number of the 1 symbol is 3, 1 being the number of ▷ and
2 being the number of 0). At the left end of this sequence of blocks (separated
by 0 symbols on the tape of U), it writes a single 1, the code for ▷.

U now has on its tape: the index e, the number n, the code number of the
start state (the “current state”), the number of the initial head position 1 (the
“current head position”), and the initial contents of the “tape” (a sequence
of blocks of 1’s representing the code numbers of the symbols of Me—the
“symbols”—separated by 0’s).

It now simulates what Me would do if started on input n, by doing the
following:

1. Find the number k of the “current head position” (at the beginning,
that’s 1),

2. Move to the kth block in the “tape” to see what the “symbol” there is,

3.tur:und:uni:

find-inst

Find the instruction matching the current “state” and “symbol,”

4. Move back to the kth block on the “tape” and replace the “symbol” there
with the code number of the symbol Me would write,

5. Move the head to where it records the current “state” and replace the
number there with the number of the new state,

6. Move to the place where it records the “tape position” and erase a 1 or
add a 1 (if the instruction says to move left or right, respectively).

7. Repeat.2

If Me started on input n never halts, then U also never halts, so its output is
undefined.

If in step (3) it turns out that the description of Me contains no instruction
for the current “state”/“symbol” pair, then Me would halt. If this happens, U
erases the part of its tape to the left of the “tape.” For each block of three 1’s
(representing a 1 on Me’s tape), it writes a 1 on the left end of its own tape,

2We’re glossing over some subtle difficulties here. E.g., U may need some extra space
when it increases the counter where it keeps track of the “current head position”—in that
case it will have to move the entire “tape” to the right.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 27

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and successively erases the “tape.” When this is done, U ’s tape contains a
single block of 1’s of length m.

If U encounters something other than a block of three 1’s on the “tape,” it
immediately halts. Since U ’s tape in this case does not contain a single block
of 1’s, its output is not a natural number, i.e., f(e, n) is undefined in this case.

2.4 The Halting Problem

tur:und:hal:
sec

explanation Assume we have fixed some enumeration of Turing machine descriptions. Each
Turing machine thus receives an index : its place in the enumeration M1, M2,
M3, . . . of Turing machine descriptions.

We know that there must be non-Turing-computable functions: the set of
Turing machine descriptions—and hence the set of Turing machines—is enu-
merable, but the set of all functions from N to N is not. But we can find specific
examples of non-computable functions as well. One such function is the halting
function.

Definition 2.4 (Halting function). The halting function h is defined as

h(e, n) =

{
0 if machine Me does not halt for input n

1 if machine Me halts for input n

Definition 2.5 (Halting problem). The Halting Problem is the problem of
determining (for any e, n) whether the Turing machine Me halts for an input
of n strokes.

explanation We show that h is not Turing-computable by showing that a related func-
tion, s, is not Turing-computable. This proof relies on the fact that anything
that can be computed by a Turing machine can be computed by a disciplined
Turing machine (section 1.7), and the fact that two Turing machines can be
hooked together to create a single machine (section 1.8).

Definition 2.6. The function s is defined as

s(e) =

{
0 if machine Me does not halt for input e

1 if machine Me halts for input e

Lemma 2.7. The function s is not Turing computable.

Proof. We suppose, for contradiction, that the function s is Turing computable.
Then there would be a Turing machine S that computes s. We may assume,
without loss of generality, that when S halts, it does so while scanning the
first square (i.e., that it is disciplined). This machine can be “hooked up” to
another machine J , which halts if it is started on input 0 (i.e., if it reads 0
in the initial state while scanning the square to the right of the end-of-tape
symbol), and otherwise wanders off to the right, never halting. S ⌢ J , the

28 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

machine created by hooking S to J , is a Turing machine, so it is Me for some e
(i.e., it appears somewhere in the enumeration). Start Me on an input of e 1s.
There are two possibilities: either Me halts or it does not halt.

1. SupposeMe halts for an input of e 1s. Then s(e) = 1. So S, when started
on e, halts with a single 1 as output on the tape. Then J starts with a 1
on the tape. In that case J does not halt. ButMe is the machine S ⌢ J ,
so it should do exactly what S followed by J would do (i.e., in this case,
wander off to the right and never halt). So Me cannot halt for an input
of e 1’s.

2. Now suppose Me does not halt for an input of e 1s. Then s(e) = 0, and
S, when started on input e, halts with a blank tape. J , when started on
a blank tape, immediately halts. Again, Me does what S followed by J
would do, so Me must halt for an input of e 1’s.

In each case we arrive at a contradiction with our assumption. This shows
there cannot be a Turing machine S: s is not Turing computable.

Theorem 2.8 (Unsolvability of the Halting Problem).tur:und:hal:

thm:halting-problem

The halting prob-
lem is unsolvable, i.e., the function h is not Turing computable.

Proof. Suppose h were Turing computable, say, by a Turing machine H. We
could use H to build a Turing machine that computes s: First, make a copy of
the input (separated by a 0 symbol). Then move back to the beginning, and
runH. We can clearly make a machine that does the former (see Problem 1.13),
and if H existed, we would be able to “hook it up” to such a copier machine
to get a new machine which would determine if Me halts on input e, i.e.,
computes s. But we’ve already shown that no such machine can exist. Hence,
h is also not Turing computable.

Problem 2.2. The Three Halting (3-Halt) problem is the problem of giving
a decision procedure to determine whether or not an arbitrarily chosen Turing
Machine halts for an input of three 1’s on an otherwise blank tape. Prove that
the 3-Halt problem is unsolvable.

Problem 2.3. Show that if the halting problem is solvable for Turing machine
and input pairs Me and n where e ̸= n, then it is also solvable for the cases
where e = n.

Problem 2.4. We proved that the halting problem is unsolvable if the input
is a number e, which identifies a Turing machine Me via an enumeration of all
Turing machines. What if we allow the description of Turing machines from
section 2.2 directly as input? Can there be a Turing machine which decides
the halting problem but takes as input descriptions of Turing machines rather
than indices? Explain why or why not.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 29

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 2.5. Show that the partial function s′ is defined as

s′(e) =

{
1 if machine Me halts for input e

undefined if machine Me does not halt for input e

is Turing computable.

2.5 The Decision Problem

tur:und:dec:
sec

We say that first-order logic is decidable iff there is an effective method for
determining whether or not a given sentence is valid. As it turns out, there
is no such method: the problem of deciding validity of first-order sentences is
unsolvable.

In order to establish this important negative result, we prove that the de-
cision problem cannot be solved by a Turing machine. That is, we show that
there is no Turing machine which, whenever it is started on a tape that contains
a first-order sentence, eventually halts and outputs either 1 or 0 depending on
whether the sentence is valid or not. By the Church–Turing thesis, every func-
tion which is computable is Turing computable. So if this “validity function”
were effectively computable at all, it would be Turing computable. If it isn’t
Turing computable, then, it also cannot be effectively computable.

Our strategy for proving that the decision problem is unsolvable is to reduce
the halting problem to it. This means the following: We have proved that the
function h(e, w) that halts with output 1 if the Turing machine described by e
halts on input w and outputs 0 otherwise, is not Turing computable. We will
show that if there were a Turing machine that decides validity of first-order
sentences, then there is also Turing machine that computes h. Since h cannot
be computed by a Turing machine, there cannot be a Turing machine that
decides validity either.

The first step in this strategy is to show that for every input w and a Turing
machine M , we can effectively describe a sentence τ(M,w) representing the
instruction set of M and the input w and a sentence α(M,w) expressing “M
eventually halts” such that:

⊨ τ(M,w)→ α(M,w) iff M halts for input w.

The bulk of our proof will consist in describing these sentences τ(M,w) and α(M,w)
and in verifying that τ(M,w)→ α(M,w) is valid iff M halts on input w.

2.6 Representing Turing Machines

tur:und:rep:
sec

explanation In order to represent Turing machines and their behavior by a sentence of first-
order logic, we have to define a suitable language. The language consists of
two parts: predicate symbols for describing configurations of the machine, and
expressions for numbering execution steps (“moments”) and positions on the
tape.

30 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We introduce two kinds of predicate symbols, both of them 2-place: For
each state q, a predicate symbol Qq, and for each tape symbol σ, a predicate
symbol Sσ. The former allow us to describe the state of M and the position of
its tape head, the latter allow us to describe the contents of the tape.

In order to express the positions of the tape head and the number of steps
executed, we need a way to express numbers. This is done using a constant
symbol 0, and a 1-place function ′, the successor function. By convention it
is written after its argument (and we leave out the parentheses). So 0 names
the leftmost position on the tape as well as the time before the first execution
step (the initial configuration), 0′ names the square to the right of the leftmost
square, and the time after the first execution step, and so on. We also introduce
a predicate symbol < to express both the ordering of tape positions (when it
means “to the left of”) and execution steps (then it means “before”).

Once we have the language in place, we list the “axioms” of τ(M,w), i.e.,
the sentences which, taken together, describe the behavior of M when run on
input w. There will be sentences which lay down conditions on 0, ′, and <,
sentences that describes the input configuration, and sentences that describe
what the configuration of M is after it executes a particular instruction.

Definition 2.9.tur:und:rep:

defn:tm-descr

Given a Turing machineM = ⟨Q,Σ, q0, δ⟩, the language LM

consists of:

1. A two-place predicate symbol Qq(x, y) for every state q ∈ Q. Intuitively,
Qq(m,n) expresses “after n steps, M is in state q scanning the mth
square.”

2. A two-place predicate symbol Sσ(x, y) for every symbol σ ∈ Σ. Intu-
itively, Sσ(m,n) expresses “after n steps, the mth square contains sym-
bol σ.”

3. A constant symbol 0

4. A one-place function symbol ′

5. A two-place predicate symbol <

For each number n there is a canonical term n, the numeral for n, which
represents it in LM . 0 is 0, 1 is 0′, 2 is 0′′, and so on. More formally:

0 = 0

n+ 1 = n′

The sentences describing the operation of the Turing machine M on input
w = σi1 . . . σik are the following:

1. Axioms describing numbers and <:

a) A sentence that says that every number is less than its successor:

∀xx < x′

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 31

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

b) A sentence that ensures that < is transitive:

∀x∀y ∀z ((x < y ∧ y < z)→ x < z)

2. Axioms describing the input configuration:

a) After 0 steps—before the machine starts—M is in the initial state q0,
scanning square 1:

Qq0(1, 0)

b) The first k + 1 squares contain the symbols ▷, σi1 , . . . , σik :

S▷(0, 0) ∧ Sσi1
(1, 0) ∧ · · · ∧ Sσik

(k, 0)

c) Otherwise, the tape is empty:

∀x (k < x→ S0(x, 0))

3. Axioms describing the transition from one configuration to the next:

For the following, let φ(x, y) be the conjunction of all sentences of the
form

∀z (((z < x ∨ x < z) ∧ Sσ(z, y))→ Sσ(z, y′))

where σ ∈ Σ. We use φ(m,n) to express “other than at square m, the
tape after n+ 1 steps is the same as after n steps.”

a) tur:und:rep:

rep-right

For every instruction δ(qi, σ) = ⟨qj , σ′, R⟩, the sentence:

∀x∀y ((Qqi(x, y) ∧ Sσ(x, y))→
(Qqj (x

′, y′) ∧ Sσ′(x, y′) ∧ φ(x, y)))

This says that if, after y steps, the machine is in state qi scanning
square x which contains symbol σ, then after y+1 steps it is scanning
square x+1, is in state qj , square x now contains σ′, and every square
other than x contains the same symbol as it did after y steps.

b) tur:und:rep:

rep-left

For every instruction δ(qi, σ) = ⟨qj , σ′, L⟩, the sentence:

∀x ∀y ((Qqi(x
′, y) ∧ Sσ(x′, y))→

(Qqj (x, y
′) ∧ Sσ′(x′, y′) ∧ φ(x, y))) ∧

∀y ((Qqi(0, y) ∧ Sσ(0, y))→
(Qqj (0, y

′) ∧ Sσ′(0, y′) ∧ φ(0, y)))

Take a moment to think about how this works: now we don’t start
with “if scanning square x . . . ” but: “if scanning square x+1 . . . ” A
move to the left means that in the next step the machine is scanning
square x. But the square that is written on is x+ 1. We do it this
way since we don’t have subtraction or a predecessor function.

32 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Note that numbers of the form x+ 1 are 1, 2, . . . , i.e., this doesn’t
cover the case where the machine is scanning square 0 and is sup-
posed to move left (which of course it can’t—it just stays put). That
special case is covered by the second conjunction: it says that if, af-
ter y steps, the machine is scanning square 0 in state qi and square 0
contains symbol σ, then after y+1 steps it’s still scanning square 0,
is now in state qj , the symbol on square 0 is σ′, and the squares
other than square 0 contain the same symbols they contained ofter
y steps.

c)tur:und:rep:

rep-stay

For every instruction δ(qi, σ) = ⟨qj , σ′, N⟩, the sentence:

∀x ∀y ((Qqi(x, y) ∧ Sσ(x, y))→
(Qqj (x, y

′) ∧ Sσ′(x, y′) ∧ φ(x, y)))

Let τ(M,w) be the conjunction of all the above sentences for Turing machineM
and input w.

In order to express thatM eventually halts, we have to find a sentence that
says “after some number of steps, the transition function will be undefined.”
Let X be the set of all pairs ⟨q, σ⟩ such that δ(q, σ) is undefined. Let α(M,w)
then be the sentence

∃x∃y (
∨

⟨q,σ⟩∈X

(Qq(x, y) ∧ Sσ(x, y)))

If we use a Turing machine with a designated halting state h, it is even
easier: then the sentence α(M,w)

∃x ∃yQh(x, y)

expresses that the machine eventually halts.

Proposition 2.10.tur:und:rep:

prop:mlessk

If m < k, then τ(M,w) ⊨ m < k

Proof. Exercise.

Problem 2.6. Prove Proposition 2.10. (Hint: use induction on k −m).

2.7 Verifying the Representation

tur:und:ver:
sec

explanationIn order to verify that our representation works, we have to prove two things.
First, we have to show that if M halts on input w, then τ(M,w)→α(M,w) is
valid. Then, we have to show the converse, i.e., that if τ(M,w)→ α(M,w) is
valid, then M does in fact eventually halt when run on input w.

The strategy for proving these is very different. For the first result, we have
to show that a sentence of first-order logic (namely, τ(M,w) → α(M,w)) is
valid. The easiest way to do this is to give a derivation. Our proof is supposed
to work for allM and w, though, so there isn’t really a single sentence for which

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 33

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

we have to give a derivation, but infinitely many. So the best we can do is to
prove by induction that, whatever M and w look like, and however many steps
it takesM to halt on input w, there will be a derivation of τ(M,w)→α(M,w).

Naturally, our induction will proceed on the number of stepsM takes before
it reaches a halting configuration. In our inductive proof, we’ll establish that
for each step n of the run of M on input w, τ(M,w) ⊨ χ(M,w, n), where
χ(M,w, n) correctly describes the configuration of M run on w after n steps.
Now if M halts on input w after, say, n steps, χ(M,w, n) will describe a
halting configuration. We’ll also show that χ(M,w, n) ⊨ α(M,w), whenever
χ(M,w, n) describes a halting configuration. So, ifM halts on input w, then for
some n, M will be in a halting configuration after n steps. Hence, τ(M,w) ⊨
χ(M,w, n) where χ(M,w, n) describes a halting configuration, and since in
that case χ(M,w, n) ⊨ α(M,w), we get that T (M,w) ⊨ α(M,w), i.e., that
⊨ τ(M,w)→ α(M,w).

The strategy for the converse is very different. Here we assume that ⊨
τ(M,w)→α(M,w) and have to prove that M halts on input w. From the hy-
pothesis we get that τ(M,w) ⊨ α(M,w), i.e., α(M,w) is true in every structure
in which τ(M,w) is true. So we’ll describe a structure M in which τ(M,w)
is true: its domain will be N, and the interpretation of all the Qq and Sσ
will be given by the configurations of M during a run on input w. So, e.g.,
M ⊨ Qq(m,n) iff T , when run on input w for n steps, is in state q and scanning
squarem. Now since τ(M,w) ⊨ α(M,w) by hypothesis, and sinceM ⊨ τ(M,w)
by construction, M ⊨ α(M,w). ButM ⊨ α(M,w) iff there is some n ∈ |M| = N
so that M , run on input w, is in a halting configuration after n steps.

Definition 2.11. Let χ(M,w, n) be the sentence

Qq(m,n) ∧ Sσ0
(0, n) ∧ · · · ∧ Sσk

(k, n) ∧ ∀x (k < x→ S0(x, n))

where q is the state ofM at time n,M is scanning square m at time n, square i
contains symbol σi at time n for 0 ≤ i ≤ k and k is the right-most non-blank
square of the tape at time 0, or the right-most square the tape head has visited
after n steps, whichever is greater.

Lemma 2.12. tur:und:ver:

lem:halt-config-implies-halt

If M run on input w is in a halting configuration after n steps,
then χ(M,w, n) ⊨ α(M,w).

Proof. Suppose that M halts for input w after n steps. There is some state q,
square m, and symbol σ such that:

1. After n steps, M is in state q scanning square m on which σ appears.

2. The transition function δ(q, σ) is undefined.

χ(M,w, n) is the description of this configuration and will include the clauses
Qq(m,n) and Sσ(m,n). These clauses together imply α(M,w):

∃x∃y (
∨

⟨q,σ⟩∈X

(Qq(x, y) ∧ Sσ(x, y)))

34 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

since Qq′(m,n)∧Sσ′(m,n) ⊨
∨

⟨q,σ⟩∈X(Qq(m,n)∧Sσ(m,n)), as ⟨q′, σ′⟩ ∈ X.

explanationSo if M halts for input w, then there is some n such that χ(M,w, n) ⊨
α(M,w). We will now show that for any time n, τ(M,w) ⊨ χ(M,w, n).

Lemma 2.13.tur:und:ver:

lem:config

For each n, if M has not halted after n steps, τ(M,w) ⊨
χ(M,w, n).

Proof. Induction basis: If n = 0, then the conjuncts of χ(M,w, 0) are also
conjuncts of τ(M,w), so entailed by it.

Inductive hypothesis: IfM has not halted before the nth step, then τ(M,w) ⊨
χ(M,w, n). We have to show that (unless χ(M,w, n) describes a halting con-
figuration), τ(M,w) ⊨ χ(M,w, n+ 1).

Suppose n > 0 and after n steps, M started on w is in state q scanning
square m. Since M does not halt after n steps, there must be an instruction
of one of the following three forms in the program of M :

1.tur:und:ver:

right

δ(q, σ) = ⟨q′, σ′, R⟩

2.tur:und:ver:

left

δ(q, σ) = ⟨q′, σ′, L⟩

3.tur:und:ver:

stay

δ(q, σ) = ⟨q′, σ′, N⟩

We will consider each of these three cases in turn.

1. Suppose there is an instruction of the form (1). By Definition 2.9(3a),
this means that

∀x∀y ((Qq(x, y) ∧ Sσ(x, y))→
(Qq′(x

′, y′) ∧ Sσ′(x, y′) ∧ φ(x, y)))

is a conjunct of τ(M,w). This entails the following sentence (universal
instantiation, m for x and n for y):

(Qq(m,n) ∧ Sσ(m,n))→
(Qq′(m

′, n′) ∧ Sσ′(m,n′) ∧ φ(m,n)).

By induction hypothesis, τ(M,w) ⊨ χ(M,w, n), i.e.,

Qq(m,n) ∧ Sσ0
(0, n) ∧ · · · ∧ Sσk

(k, n)∧
∀x (k < x→ S0(x, n))

Since after n steps, tape squarem contains σ, the corresponding conjunct
is Sσ(m,n), so this entails:

Qq(m,n) ∧ Sσ(m,n)

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 35

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We now get

Qq′(m
′, n′) ∧ Sσ′(m,n′) ∧
Sσ0

(0, n′) ∧ · · · ∧ Sσk
(k, n′) ∧

∀x (k < x→ S0(x, n′))

as follows: The first line comes directly from the consequent of the pre-
ceding conditional, by modus ponens. Each conjunct in the middle
line—which excludes Sσm

(m,n′)—follows from the corresponding con-
junct in χ(M,w, n) together with φ(m,n).

If m < k, τ(M,w) ⊢ m < k (Proposition 2.10) and by transitivity of <,
we have ∀x (k < x→m < x). If m = k, then ∀x (k < x→m < x) by
logic alone. The last line then follows from the corresponding conjunct
in χ(M,w, n), ∀x (k < x→m < x), and φ(m,n). If m < k, this already
is χ(M,w, n+ 1).

Now suppose m = k. In that case, after n + 1 steps, the tape head has
also visited square k + 1, which now is the right-most square visited. So

χ(M,w, n + 1) has a new conjunct, S0(k
′
, n′), and the last conjunct is

∀x (k′ < x→ S0(x, n′)). We have to verify that these two sentences are
also implied.

We already have ∀x (k < x → S0(x, n′)). In particular, this gives us

k < k
′ → S0(k

′
, n′). From the axiom ∀xx < x′ we get k < k

′
. By modus

ponens, S0(k
′
, n′) follows.

Also, since τ(M,w) ⊢ k < k
′
, the axiom for transitivity of < gives us

∀x (k′ < x→S0(x, n′)). (We leave the verification of this as an exercise.)

2. Suppose there is an instruction of the form (2). Then, by Definition 2.9(3b),

∀x∀y ((Qq(x
′, y) ∧ Sσ(x′, y))→

(Qq′(x, y
′) ∧ Sσ′(x′, y′) ∧ φ(x, y))) ∧

∀y ((Qqi(0, y) ∧ Sσ(0, y))→
(Qqj (0, y

′) ∧ Sσ′(0, y′) ∧ φ(0, y)))

is a conjunct of τ(M,w). If m > 0, then let l = m − 1 (i.e., m = l + 1).
The first conjunct of the above sentence entails the following:

(Qq(l
′
, n) ∧ Sσ(l

′
, n))→

(Qq′(l, n
′) ∧ Sσ′(l

′
, n′) ∧ φ(l, n))

Otherwise, let l = m = 0 and consider the following sentence entailed by
the second conjunct:

((Qqi(0, n) ∧ Sσ(0, n))→
(Qqj (0, n

′) ∧ Sσ′(0, n′) ∧ φ(0, n)))

36 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Either sentence implies

Qq′(l, n
′) ∧ Sσ′(m,n′) ∧

Sσ0
(0, n′) ∧ · · · ∧ Sσk

(k, n′) ∧
∀x (k < x→ S0(x, n′))

as before. (Note that in the first case, l
′ ≡ l + 1 ≡ m and in the second

case l ≡ 0.) But this just is χ(M,w, n+ 1).

3. Case (3) is left as an exercise.

We have shown that for any n, τ(M,w) ⊨ χ(M,w, n).

Problem 2.7. Complete case (3) of the proof of Lemma 2.13.

Problem 2.8. Give a derivation of Sσi(i, n
′) from Sσi(i, n) and φ(m,n) (as-

suming i ̸= m, i.e., either i < m or m < i).

Problem 2.9. Give a derivation of ∀x (k′ < x→ S0(x, n′)) from ∀x (k < x→
S0(x, n

′)), ∀xx < x′, and ∀x∀y ∀z ((x < y ∧ y < z)→ x < z).)

Lemma 2.14.tur:und:ver:

lem:valid-if-halt

If M halts on input w, then τ(M,w)→ α(M,w) is valid.

Proof. By Lemma 2.13, we know that, for any time n, the description χ(M,w, n)
of the configuration ofM at time n is entailed by τ(M,w). SupposeM halts af-
ter k steps. At that point, it will be scanning square m, for some m ∈ N. Then
χ(M,w, k) describes a halting configuration of M , i.e., it contains as conjuncts
both Qq(m, k) and Sσ(m, k) with δ(q, σ) undefined. Thus, by Lemma 2.12,
χ(M,w, k) ⊨ α(M,w). But since τ(M,w) ⊨ χ(M,w, k), we have τ(M,w) ⊨
α(M,w) and therefore τ(M,w)→ α(M,w) is valid.

explanationTo complete the verification of our claim, we also have to establish the
reverse direction: if τ(M,w)→α(M,w) is valid, thenM does in fact halt when
started on input w.

Lemma 2.15.tur:und:ver:

lem:halt-if-valid

If ⊨ τ(M,w)→ α(M,w), then M halts on input w.

Proof. Consider the LM -structure M with domain N which interprets 0 as 0,
′ as the successor function, and < as the less-than relation, and the predicates
Qq and Sσ as follows:

QM
q = {⟨m,n⟩ : started on w, after n steps,

M is in state q scanning square m
}

SMσ = {⟨m,n⟩ : started on w, after n steps,
square m of M contains symbol σ

}

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 37

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In other words, we construct the structure M so that it describes what M
started on input w actually does, step by step. Clearly, M ⊨ τ(M,w). If
⊨ τ(M,w)→ α(M,w), then also M ⊨ α(M,w), i.e.,

M ⊨ ∃x∃y (
∨

⟨q,σ⟩∈X

(Qq(x, y) ∧ Sσ(x, y))).

As |M| = N, there must be m, n ∈ N so that M ⊨ Qq(m,n) ∧ Sσ(m,n) for
some q and σ such that δ(q, σ) is undefined. By the definition of M, this means
that M started on input w after n steps is in state q and reading symbol σ,
and the transition function is undefined, i.e., M has halted.

2.8 The Decision Problem is Unsolvable

tur:und:uns:
sec

Theorem 2.16. tur:und:uns:

thm:decision-prob

The decision problem is unsolvable: There is no Turing ma-
chine D, which when started on a tape that contains a sentence ψ of first-order
logic as input, D eventually halts, and outputs 1 iff ψ is valid and 0 otherwise.

Proof. Suppose the decision problem were solvable, i.e., suppose there were a
Turing machine D. Then we could solve the halting problem as follows. We
construct a Turing machine E that, given as input the number e of Turing
machine Me and input w, computes the corresponding sentence τ(Me, w) →
α(Me, w) and halts, scanning the leftmost square on the tape. The machine
E ⌢ D would then, given input e and w, first compute τ(Me, w)→ α(Me, w)
and then run the decision problem machine D on that input. D halts with out-
put 1 iff τ(Me, w)→α(Me, w) is valid and outputs 0 otherwise. By Lemma 2.15
and Lemma 2.14, τ(Me, w)→α(Me, w) is valid iff Me halts on input w. Thus,
E ⌢ D, given input e and w halts with output 1 iff Me halts on input w and
halts with output 0 otherwise. In other words, E ⌢ D would solve the halting
problem. But we know, by Theorem 2.8, that no such Turing machine can
exist.

Corollary 2.17. tur:und:uns:

cor:undecidable-sat

It is undecidable if an arbitrary sentence of first-order logic
is satisfiable.

Proof. Suppose satisfiability were decidable by a Turing machine S. Then we
could solve the decision problem as follows: Given a sentence B as input, move
ψ to the right one square. Return to square 1 and write the symbol ¬.

Now run the Turing machine S. It eventually halts with output either 1 (if
¬ψ is satisfiable) or 0 (if ¬ψ is unsatisfiable) on the tape. If there is a 1 on
square 1, erase it; if square 1 is empty, write a 1, then halt.

This Turing machine always halts, and its output is 1 iff ¬ψ is unsatisfiable
and 0 otherwise. Since ψ is valid iff ¬ψ is unsatisfiable, the machine outputs 1
iff ψ is valid, and 0 otherwise, i.e., it would solve the decision problem.

38 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

explanationSo there is no Turing machine which always gives a correct “yes” or “no”
answer to the question “Is ψ a valid sentence of first-order logic?” However,
there is a Turing machine that always gives a correct “yes” answer—but simply
does not halt if the answer is “no.” This follows from the soundness and
completeness theorem of first-order logic, and the fact that derivations can be
effectively enumerated.

Theorem 2.18.tur:und:uns:

thm:valid-ce

Validity of first-order sentences is semi-decidable: There is a
Turing machine E, which when started on a tape that contains a sentence ψ
of first-order logic as input, E eventually halts and outputs 1 iff ψ is valid, but
does not halt otherwise.

Proof. All possible derivations of first-order logic can be generated, one after
another, by an effective algorithm. The machine E does this, and when it finds
a derivation that shows that ⊢ ψ, it halts with output 1. By the soundness
theorem, if E halts with output 1, it’s because ⊨ ψ. By the completeness the-
orem, if ⊨ ψ there is a derivation that shows that ⊢ ψ. Since E systematically
generates all possible derivations, it will eventually find one that shows ⊢ ψ, so
will eventually halt with output 1.

2.9 Trakthenbrot’s Theorem

tur:und:tra:
sec

explanationIn section 2.6 we defined sentences τ(M,w) and α(M,w) for a Turing ma-
chine M and input string w. Then we showed in Lemma 2.14 and Lemma 2.15
that τ(M,w) → α(M,w) is valid iff M , started on input w, eventually halts.
Since the Halting Problem is undecidable, this implies that validity and satisfi-
ability of sentences of first-order logic is undecidable (Theorem 2.16 and Corol-
lary 2.17).

But validity and satisfiability of sentences is defined for arbitrary structures,
finite or infinite. You might suspect that it is easier to decide if a sentence is
satisfiable in a finite structure (or valid in all finite structures). We can adapt
the proof of the unsolvability of the decision problem so that it shows this is
not the case.

First, if you go back to the proof of Lemma 2.15, you’ll see that what
we did there is produce a model M of τ(M,w) which describes exactly what
machine M does when started on input w. The domain of that model was N,
i.e., infinite. But ifM actually halts on input w, we can build a finite model M′

in the same way. Suppose M started on input w halts after k steps. Take as
domain |M′| the set {0, . . . , n}, where n is the larger of k and the length of w,
and let

′M
′
(x) =

{
x+ 1 if x < n

n otherwise,

and ⟨x, y⟩ ∈ <M′
iff x < y or x = y = n. Otherwise M′ is defined just like M.

By the definition of M′, just like in the proof of Lemma 2.15, M′ ⊨ τ(M,w).

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 39

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

And since we assumed that M halts on input w, M′ ⊨ α(M,w). So, M′ is a
finite model of τ(M,w) ∧ α(M,w) (note that we’ve replaced → with ∧).

We are halfway to a proof: we’ve shown that if M halts on input w, then
τ(M, e) ∧ α(M,w) has a finite model. Unfortunately, the “only if” direction
does not hold. For instance, ifM after n steps is in state q and reads a symbol σ,
and δ(q, σ) = ⟨q, σ,N⟩, then the configuration after n + 1 steps is exactly the
same as the configuration after n steps (same state, same head position, same
tape contents). But the machine never halts; it’s in an infinite loop. The
corresponding structure M′ above satisfies τ(M,w) but not α(M,w). (In it,
the values of n+ l are all the same, so it is finite). But by changing τ(M,w)
in a suitable way we can rule out structures like this.

Consider the sentences describing the operation of the Turing machine M
on input w = σi1 . . . σik :

1. Axioms describing numbers and < (just like in the definition of τ(M,w)
in section 2.6).

2. Axioms describing the input configuration: just like in the definition
of τ(M,w).

3. Axioms describing the transition from one configuration to the next:

For the following, let φ(x, y) be as before, and let

ψ(y) ≡ ∀x (x < y→ x ̸= y).

a) tur:und:tra:

rep-right

For every instruction δ(qi, σ) = ⟨qj , σ′, R⟩, the sentence:

∀x∀y ((Qqi(x, y) ∧ Sσ(x, y))→
(Qqj (x

′, y′) ∧ Sσ′(x, y′) ∧ φ(x, y) ∧ ψ(y′)))

b) tur:und:tra:

rep-left

For every instruction δ(qi, σ) = ⟨qj , σ′, L⟩, the sentence

∀x∀y ((Qqi(x
′, y) ∧ Sσ(x′, y))→

(Qqj (x, y
′) ∧ Sσ′(x′, y′) ∧ φ(x, y))) ∧

∀y ((Qqi(0, y) ∧ Sσ(0, y))→
(Qqj (0, y

′) ∧ Sσ′(0, y′) ∧ φ(0, y) ∧ ψ(y′)))

c) tur:und:tra:

rep-stay

For every instruction δ(qi, σ) = ⟨qj , σ′, N⟩, the sentence:

∀x ∀y ((Qqi(x, y) ∧ Sσ(x, y))→
(Qqj (x, y

′) ∧ Sσ′(x, y′) ∧ φ(x, y) ∧ ψ(y′)))

As you can see, the sentences describing the transitions of M are the
same as the corresponding sentence in τ(M,w), except we add ψ(y′) at
the end. ψ(y′) ensures that the number y′ of the “next” configuration is
different from all previous numbers 0, 0′,

40 turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Let τ ′(M,w) be the conjunction of all the above sentences for Turing ma-
chine M and input w.

Lemma 2.19.tur:und:tra:

lem:halts-sat

If M started on input w halts, then τ ′(M,w)∧α(M,w) has a
finite model.

Proof. Let M′ be as in the proof of Lemma 2.15, except

|M′| = {0, . . . , n},

′M
′
(x) =

{
x+ 1 if x < n

n otherwise,

⟨x, y⟩ ∈ <M′
iff x < y or x = y = n,

where n = max(k, len(w)) and k is the least number such that M started
on input w has halted after k steps. We leave the verification that M′ ⊨
τ ′(M,w) ∧ E(M,w) as an exercise.

Problem 2.10. Complete the proof of Lemma 2.19 by proving that M′ ⊨
τ(M,w) ∧ E(M,w).

Lemma 2.20.tur:und:tra:

lem:sat-halts

If τ ′(M,w) ∧ α(M,w) has a finite model, then M started on
input w halts.

Proof. We show the contrapositive. Suppose that M started on w does not
halt. If τ ′(M,w) ∧ α(M,w) has no model at all, we are done. So assume M is
a model of τ(M,w) ∧ α(M,w). We have to show that it cannot be finite.

We can prove, just like in Lemma 2.13, that if M , started on input w, has
not halted after n steps, then τ ′(M,w) ⊨ χ(M,w, n)∧ψ(n). SinceM started on
input w does not halt, τ ′(M,w) ⊨ χ(M,w, n)∧ψ(n) for all n ∈ N. Note that by
Proposition 2.10, τ ′(M,w) ⊨ k < n for all k < n. Also ψ(n) ⊨ k < n→ k ̸= n.
So, M ⊨ k ̸= n for all k < n, i.e., the infinitely many terms k must all have
different values in M. But this requires that |M| be infinite, so M cannot be a
finite model of τ ′(M,w) ∧ α(M,w).

Problem 2.11. Complete the proof of Lemma 2.20 by proving that if M ,
started on input w, has not halted after n steps, then τ ′(M,w) ⊨ ψ(n).

Theorem 2.21 (Trakthenbrot’s Theorem).tur:und:tra:

thm:trakhtenbrodt

It is undecidable if an arbi-
trary sentence of first-order logic has a finite model (i.e., is finitely satisfiable).

Proof. Suppose there were a Turing machine F that decides the finite satis-
fiability problem. Then given any Turing machine M and input w, we could
compute the sentence τ ′(M,w)∧α(M,w), and use F to decide if it has a finite
model. By Lemmata 2.19 and 2.20, it does iff M started on input w halts. So
we could use F to solve the halting problem, which we know is unsolvable.

turing-machines rev: 6c541de (2024-02-28) by OLP / CC–BY 41

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Corollary 2.22. tur:und:tra:

cor:fproof-incomp

There can be no derivation system that is sound and complete
for finite validity, i.e., a derivation system which has ⊢ ψ iff M ⊨ ψ for every
finite structure M.

Proof. Exercise.

Problem 2.12. Prove Corollary 2.22. Observe that ψ is satisfied in every
finite structure iff ¬ψ is not finitely satisfiable. Explain why finite satisfiability
is semi-decidable in the sense of Theorem 2.18. Use this to argue that if there
were a derivation system for finite validity, then finite satisfiability would be
decidable.

Photo Credits

42

Bibliography

43

	Turing Machines
	Turing Machine Computations
	Introduction
	Representing Turing Machines
	Turing Machines
	Configurations and Computations
	Unary Representation of Numbers
	Halting States
	Disciplined Machines
	Combining Turing Machines
	Variants of Turing Machines
	The Church–Turing Thesis

	Undecidability
	Introduction
	Enumerating Turing Machines
	Universal Turing Machines
	The Halting Problem
	The Decision Problem
	Representing Turing Machines
	Verifying the Representation
	The Decision Problem is Unsolvable
	Trakthenbrot's Theorem

	Photo Credits
	Bibliography

