
Chapter udf

Turing Machine Computations

mac.1 Introduction

tur:mac:int:
sec

What does it mean for a function, say, from N to N to be computable? Among
the first answers, and the most well known one, is that a function is computable
if it can be computed by a Turing machine. This notion was set out by Alan
Turing in 1936. Turing machines are an example of a model of computation—
they are a mathematically precise way of defining the idea of a “computational
procedure.” What exactly that means is debated, but it is widely agreed that
Turing machines are one way of specifying computational procedures. Even
though the term “Turing machine” evokes the image of a physical machine
with moving parts, strictly speaking a Turing machine is a purely mathematical
construct, and as such it idealizes the idea of a computational procedure. For
instance, we place no restriction on either the time or memory requirements
of a Turing machine: Turing machines can compute something even if the
computation would require more storage space or more steps than there are
atoms in the universe.

explanationIt is perhaps best to think of a Turing machine as a program for a special
kind of imaginary mechanism. This mechanism consists of a tape and a read-
write head. In our version of Turing machines, the tape is infinite in one
direction (to the right), and it is divided into squares, each of which may contain
a symbol from a finite alphabet. Such alphabets can contain any number of
different symbols, but we will mainly make do with three: ▷, 0, and 1. When
the mechanism is started, the tape is empty (i.e., each square contains the
symbol 0) except for the leftmost square, which contains ▷, and a finite number
of squares which contain the input. At any time, the mechanism is in one of a
finite number of states. At the outset, the head scans the leftmost square and
in a specified initial state. At each step of the mechanism’s run, the content
of the square currently scanned together with the state the mechanism is in
and the Turing machine program determine what happens next. The Turing
machine program is given by a partial function which takes as input a state q
and a symbol σ and outputs a triple ⟨q′, σ′, D⟩. Whenever the mechanism is in

1



Figure mac.1: A Turing machine executing its program.

tur:mac:int:

fig:tm

state q and reads symbol σ, it replaces the symbol on the current square with
σ′, the head moves left, right, or stays put according to whether D is L, R, or
N , and the mechanism goes into state q′.

For instance, consider the situation in Figure mac.1. The visible part of the
tape of the Turing machine contains the end-of-tape symbol ▷ on the leftmost
square, followed by three 1’s, a 0, and four more 1’s. The head is reading the
third square from the left, which contains a 1, and is in state q1—we say “the
machine is reading a 1 in state q1.” If the program of the Turing machine
returns, for input ⟨q1, 1⟩, the triple ⟨q2, 0, N⟩, the machine would now replace
the 1 on the third square with a 0, leave the read/write head where it is, and
switch to state q2. If then the program returns ⟨q3, 0, R⟩ for input ⟨q2, 0⟩, the
machine would now overwrite the 0 with another 0 (effectively, leaving the
content of the tape under the read/write head unchanged), move one square
to the right, and enter state q3. And so on.

We say that the machine halts when it encounters some state, qn, and sym-
bol, σ such that there is no instruction for ⟨qn, σ⟩, i.e., the transition function
for input ⟨qn, σ⟩ is undefined. In other words, the machine has no instruction
to carry out, and at that point, it ceases operation. Halting is sometimes rep-
resented by a specific halt state h. This will be demonstrated in more detail
later on.

digression The beauty of Turing’s paper, “On computable numbers,” is that he presents
not only a formal definition, but also an argument that the definition captures
the intuitive notion of computability. From the definition, it should be clear
that any function computable by a Turing machine is computable in the intu-
itive sense. Turing offers three types of argument that the converse is true, i.e.,
that any function that we would naturally regard as computable is computable
by such a machine. They are (in Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

3. Giving examples of large classes of numbers which are computable.

2 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Our goal is to try to define the notion of computability “in principle,” i.e.,
without taking into account practical limitations of time and space. Of course,
with the broadest definition of computability in place, one can then go on
to consider computation with bounded resources; this forms the heart of the
subject known as “computational complexity.”

Historical Remarks Alan Turing invented Turing machines in 1936. While
his interest at the time was the decidability of first-order logic, the paper has
been described as a definitive paper on the foundations of computer design.
In the paper, Turing focuses on computable real numbers, i.e., real numbers
whose decimal expansions are computable; but he notes that it is not hard
to adapt his notions to computable functions on the natural numbers, and
so on. Notice that this was a full five years before the first working general
purpose computer was built in 1941 (by the German Konrad Zuse in his par-
ent’s living room), seven years before Turing and his colleagues at Bletchley
Park built the code-breaking Colossus (1943), nine years before the American
ENIAC (1945), twelve years before the first British general purpose computer—
the Manchester Small-Scale Experimental Machine—was built in Manchester
(1948), and thirteen years before the Americans first tested the BINAC (1949).
The Manchester SSEM has the distinction of being the first stored-program
computer—previous machines had to be rewired by hand for each new task.

mac.2 Representing Turing Machines

tur:mac:rep:
sec

explanationTuring machines can be represented visually by state diagrams. The diagrams
are composed of state cells connected by arrows. Unsurprisingly, each state cell
represents a state of the machine. Each arrow represents an instruction that
can be carried out from that state, with the specifics of the instruction written
above or below the appropriate arrow. Consider the following machine, which
has only two internal states, q0 and q1, and one instruction:

q0start q1
0, 1, R

Recall that the Turing machine has a read/write head and a tape with the
input written on it. The instruction can be read as if reading a 0 in state q0,
write a 1, move right, and move to state q1. This is equivalent to the transition
function mapping ⟨q0, 0⟩ to ⟨q1, 1, R⟩.

Example mac.1. Even Machine: The following Turing machine halts if, and
only if, there are an even number of 1’s on the tape (under the assumption

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


that all 1’s come before the first 0 on the tape).

q0start q1

1, 1, R

0, 0, R

1, 1, R

The state diagram corresponds to the following transition function:

δ(q0, 1) = ⟨q1, 1, R⟩,
δ(q1, 1) = ⟨q0, 1, R⟩,
δ(q1, 0) = ⟨q1, 0, R⟩

explanation The above machine halts only when the input is an even number of strokes.
Otherwise, the machine (theoretically) continues to operate indefinitely. For
any machine and input, it is possible to trace through the configurations of
the machine in order to determine the output. We will give a formal definition
of configurations later. For now, we can intuitively think of configurations as
a series of diagrams showing the state of the machine at any point in time
during operation. Configurations show the content of the tape, the state of the
machine and the location of the read/write head.

Let us trace through the configurations of the even machine if it is started
with an input of four 1’s. In this case, we expect that the machine will halt.
We will then run the machine on an input of three 1’s, where the machine will
run forever.

The machine starts in state q0, scanning the leftmost 1. We can represent
the initial state of the machine as follows:

▷101110 . . .

The above configuration is straightforward. As can be seen, the machine starts
in state one, scanning the leftmost 1. This is represented by a subscript of the
state name on the first 1. The applicable instruction at this point is δ(q0, 1) =
⟨q1, 1, R⟩, and so the machine moves right on the tape and changes to state q1.

▷111110 . . .

Since the machine is now in state q1 scanning a 1, we have to “follow” the
instruction δ(q1, 1) = ⟨q0, 1, R⟩. This results in the configuration

▷111010 . . .

As the machine continues, the rules are applied again in the same order, re-
sulting in the following two configurations:

▷111110 . . .

4 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


▷111100 . . .

The machine is now in state q0 scanning a 0. Based on the transition diagram,
we can easily see that there is no instruction to be carried out, and thus the
machine has halted. This means that the input has been accepted.

Suppose next we start the machine with an input of three 1’s. The first few
configurations are similar, as the same instructions are carried out, with only
a small difference of the tape input:

▷10110 . . .

▷11110 . . .

▷11100 . . .

▷11101 . . .

The machine has now traversed past all the 1’s, and is reading a 0 in state q1. As
shown in the diagram, there is an instruction of the form δ(q1, 0) = ⟨q1, 0, R⟩.
Since the tape is filled with 0 indefinitely to the right, the machine will continue
to execute this instruction forever, staying in state q1 and moving ever further
to the right. The machine will never halt, and does not accept the input.

explanationIt is important to note that not all machines will halt. If halting means that
the machine runs out of instructions to execute, then we can create a machine
that never halts simply by ensuring that there is an outgoing arrow for each
symbol at each state. The even machine can be modified to run indefinitely by
adding an instruction for scanning a 0 at q0.

Example mac.2.

q0start q1

1, 1, R

0, 0, R 0, 0, R

1, 1, R

explanationMachine tables are another way of representing Turing machines. Machine
tables have the tape alphabet displayed on the x-axis, and the set of machine
states across the y-axis. Inside the table, at the intersection of each state and
symbol, is written the rest of the instruction—the new state, new symbol, and
direction of movement. Machine tables make it easy to determine in what
state, and for what symbol, the machine halts. Whenever there is a gap in the
table is a possible point for the machine to halt. Unlike state diagrams and
instruction sets, where the points at which the machine halts are not always
immediately obvious, any halting points are quickly identified by finding the
gaps in the machine table.

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


q0start q1 q2

q3q4q5

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, R

0, 1, L

1, 1, L

1, 1, L

0, 0, L

1, 1, L

0, 0, R

Figure mac.2: A doubler machine

tur:mac:rep:

fig:doubler
Example mac.3. The machine table for the even machine is:

0 1 ▷
q0 1, q1, R
q1 0, q1, R 1, q0, R

As we can see, the machine halts when scanning a 0 in state q0.

explanation So far we have only considered machines that read and accept input. How-
ever, Turing machines have the capacity to both read and write. An example
of such a machine (although there are many, many examples) is a doubler. A
doubler, when started with a block of n 1’s on the tape, outputs a block of 2n
1’s.

Example mac.4. tur:mac:rep:

ex:doubler

Before building a doubler machine, it is important to come
up with a strategy for solving the problem. Since the machine (as we have
formulated it) cannot remember how many 1’s it has read, we need to come
up with a way to keep track of all the 1’s on the tape. One such way is to
separate the output from the input with a 0. The machine can then erase the
first 1 from the input, traverse over the rest of the input, leave a 0, and write
two new 1’s. The machine will then go back and find the second 1 in the input,
and double that one as well. For each one 1 of input, it will write two 1’s of
output. By erasing the input as the machine goes, we can guarantee that no
1 is missed or doubled twice. When the entire input is erased, there will be
2n 1’s left on the tape. The state diagram of the resulting Turing machine is
depicted in Figure mac.2.

Problem mac.1. Choose an arbitrary input and trace through the configu-
rations of the doubler machine in Example mac.4.

6 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Problem mac.2. Design a Turing-machine with alphabet {▷, 0, A,B} that
accepts, i.e., halts on, any string of A’s and B’s where the number of A’s is
the same as the number of B’s and all the A’s precede all the B’s, and rejects,
i.e., does not halt on, any string where the number of A’s is not equal to the
number of B’s or the A’s do not precede all the B’s. (E.g., the machine should
accept AABB, and AAABBB, but reject both AAB and AABBAABB.)

Problem mac.3. Design a Turing-machine with alphabet {▷, 0, A,B} that
takes as input any string α of A’s and B’s and duplicates them to produce an
output of the form αα. (E.g. inputABBA should result in outputABBAABBA).

Problem mac.4. Alphabetical?: Design a Turing-machine with alphabet {▷, 0, A,B}
that when given as input a finite sequence of A’s and B’s checks to see if all
the A’s appear to the left of all the B’s or not. The machine should leave the
input string on the tape, and either halt if the string is “alphabetical”, or loop
forever if the string is not.

Problem mac.5. Alphabetizer: Design a Turing-machine with alphabet {▷, 0, A,B}
that takes as input a finite sequence of A’s and B’s rearranges them so that
all the A’s are to the left of all the B’s. (e.g., the sequence BABAA should
become the sequence AAABB, and the sequence ABBABB should become
the sequence AABBBB).

mac.3 Turing Machines

tur:mac:tur:
sec

explanationThe formal definition of what constitutes a Turing machine looks abstract, but
is actually simple: it merely packs into one mathematical structure all the
information needed to specify the workings of a Turing machine. This includes
(1) which states the machine can be in, (2) which symbols are allowed to be
on the tape, (3) which state the machine should start in, and (4) what the
instruction set of the machine is.

Definition mac.5 (Turing machine). A Turing machine M is a tuple ⟨Q,Σ, q0, δ⟩
consisting of

1. a finite set of states Q,

2. a finite alphabet Σ which includes ▷ and 0,

3. an initial state q0 ∈ Q,

4. a finite instruction set δ : Q×Σ 7→ Q×Σ × {L,R,N}.

The partial function δ is also called the transition function of M .

explanationWe assume that the tape is infinite in one direction only. For this reason
it is useful to designate a special symbol ▷ as a marker for the left end of the
tape. This makes it easier for Turing machine programs to tell when they’re

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


“in danger” of running off the tape. We could assume that this symbol is never
overwritten, i.e., that δ(q, ▷) = ⟨q′, ▷, x⟩ if δ(q, ▷) is defined. Some textbooks
do this, we do not. You can simply be careful when constructing your Turing
machine that it never overwrites ▷. Moreover, there are cases where allowing
such overwriting provides some convenient flexibility.

Example mac.6. Even Machine: The even machine is formally the quadruple
⟨Q,Σ, q0, δ⟩ where

Q = {q0, q1}
Σ = {▷, 0, 1},

δ(q0, 1) = ⟨q1, 1, R⟩,
δ(q1, 1) = ⟨q0, 1, R⟩,
δ(q1, 0) = ⟨q1, 0, R⟩.

tur.4 Configurations and Computations

cmp:tur:con:
sec

explanation Recall tracing through the configurations of the even machine earlier. The
imaginary mechanism consisting of tape, read/write head, and Turing machine
program is really just an intuitive way of visualizing what a Turing machine
computation is. Formally, we can define the computation of a Turing machine
on a given input as a sequence of configurations—and a configuration in turn
is a sequence of symbols (corresponding to the contents of the tape at a given
point in the computation), a number indicating the position of the read/write
head, and a state. Using these, we can define what the Turing machine M
computes on a given input.

Definition tur.7 (Configuration). A configuration of Turing machine M =
⟨Q,Σ, q0, δ⟩ is a triple ⟨C,m, q⟩ where

1. C ∈ Σ∗ is a finite sequence of symbols from Σ,

2. m ∈ N is a number < len(C), and

3. q ∈ Q

Intuitively, the sequence C is the content of the tape (symbols of all squares
from the leftmost square to the last non-blank or previously visited square),
m is the number of the square the read/write head is scanning (beginning with
0 being the number of the leftmost square), and q is the current state of the
machine.

explanation The potential input for a Turing machine is a sequence of symbols, usually
a sequence that encodes a number in some form. The initial configuration of
the Turing machine is that configuration in which we start the Turing machine
to work on that input: the tape contains the tape end marker immediately
followed by the input written on the squares to the right, the read/write head

8 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


is scanning the leftmost square of the input (i.e., the square to the right of the
left end marker), and the mechanism is in the designated start state q0.

Definition tur.8 (Initial configuration). The initial configuration ofM for
input I ∈ Σ∗ is

⟨▷ ⌢ I, 1, q0⟩.

explanationThe ⌢ symbol is for concatenation—the input string begins immediately
to the left end marker.

Definition tur.9. We say that a configuration ⟨C,m, q⟩ yields the configura-
tion ⟨C ′,m′, q′⟩ in one step (according to M), iff

1. the m-th symbol of C is σ,

2. the instruction set of M specifies δ(q, σ) = ⟨q′, σ′, D⟩,

3. the m-th symbol of C ′ is σ′, and

4. a) D = L and m′ = m− 1 if m > 0, otherwise m′ = 0, or

b) D = R and m′ = m+ 1, or

c) D = N and m′ = m,

5. if m′ = len(C), then len(C ′) = len(C) + 1 and the m′-th symbol of C ′

is 0. Otherwise len(C ′) = len(C).

6. for all i such that i < len(C) and i ̸= m, C ′(i) = C(i),

Definition tur.10.cmp:tur:con:

defn:run-output

A run of M on input I is a sequence Ci of configurations
of M , where C0 is the initial configuration of M for input I, and each Ci yields
Ci+1 in one step.

We say that M halts on input I after k steps if Ck = ⟨C,m, q⟩, the mth
symbol of C is σ, and δ(q, σ) is undefined. In that case, the output of M
for input I is O, where O is a string of symbols not ending in 0 such that
C = ▷ ⌢ O ⌢ 0j for some i, j ∈ N.

explanationAccording to this definition, the output O of M always ends in a symbol
other than 0, or, if at time k the entire tape is filled with 0 (except for the
leftmost ▷), O is the empty string.

mac.5 Unary Representation of Numbers

tur:mac:una:
sec

explanationTuring machines work on sequences of symbols written on their tape. Depend-
ing on the alphabet a Turing machine uses, these sequences of symbols can
represent various inputs and outputs. Of particular interest, of course, are
Turing machines which compute arithmetical functions, i.e., functions of nat-
ural numbers. A simple way to represent positive integers is by coding them
as sequences of a single symbol 1. If n ∈ N, let 1n be the empty sequence if
n = 0, and otherwise the sequence consisting of exactly n 1’s.

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


q0start q1 q2
0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, N

Figure mac.3: A machine computing f(x, y) = x+ y

tur:mac:una:

fig:adder

Definition mac.11 (Computation). A Turing machine M computes the
function f : Nk → N iff M halts on input

1n101n20 . . . 01nk

with output 1f(n1,...,nk).

Problem mac.6. Give a definition for when a Turing machine M computes
the function f : Nk → Nm.

Example mac.12. tur:mac:una:

ex:adder

Addition: Let’s build a machine that computes the func-
tion f(n,m) = n + m. This requires a machine that starts with two blocks
of 1’s of length n and m on the tape, and halts with one block consisting of
n + m 1’s. The two input blocks of 1’s are separated by a 0, so one method
would be to write a stroke on the square containing the 0, and erase the last 1.

Problem mac.7. Trace through the configurations of the machine from Ex-
ample mac.12 for input ⟨3, 2⟩. What happens if the machine computes 0 + 0?

explanation In Example mac.4, we gave an example of a Turing machine that takes
as input a sequence of 1’s and halts with a sequence of twice as many 1’s on
the tape—the doubler machine. However, because the output contains 0’s to
the left of the doubled block of 1’s, it does not actually compute the function
f(x) = 2x, as you might have assumed. We’ll describe two ways of fixing that.

Example mac.13. The machine in Figure mac.4 computes the function f(x) =
2x. Instead of erasing the input and writing two 1’s at the far right for every
1 in the input as the machine from Example mac.4 does, this machine adds a
single 1 to the right for every 1 in the input. It has to keep track of where the
input ends, so it leaves a 0 between the input and the added strokes, which it
fills with a 1 at the very end. And we have to “remember” where we are in the
input, so we temporarily replace a 1 in the input block by a 0.

Example mac.14. tur:mac:una:
ex:mover

A second possibility for computing f(x) = 2x is to keep
the original doubler machine, but add states and instructions at the end which
move the doubled block of strokes to the far left of the tape. The machine in

10 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


q0start

q1

q2 q3

q4

q5

q6

q7

q8

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, L

1, 1, L

0, 0, L

1, 1, L

1, 1, L

0, 1, R

0,
1,
R

0, 1, R

1, 1, R

0, 0, L

1, 0, N

Figure mac.4: A machine computing f(x) = 2x

tur:mac:una:

fig:doubler-disc

Figure mac.5 does just this last part: started on a tape consisting of a block
of 0’s followed by a block of 1’s (and the head positioned anywhere in the block
of 0’s), it erases the 1’s one at a time and writes them at the beginning of the
tape. In order to be able to tell when it is done, it first marks the end of the
block of 1’s with a ▷ symbol, which gets deleted at the end. We’ve started
numbering the states at q6, so they can be added to the doubler machine.
All you’ll need is an additional instruction δ(q5, 0) = ⟨q6, 0, N⟩, i.e., an arrow
from q5 to q6 labelled 0, 0, N . (There is one subtle problem: the resulting
machine does not work for input x = 0. We’ll leave this as an exercise.)

Problem mac.8. In Example mac.14 we described a machine consisting of a
combination of the doubler machine from Figure mac.4 and the mover machine
from Figure mac.5. What happens if you start this combined machine on
input x = 0, i.e., on an empty tape? How would you fix the machine so that
in this case the machine halts with output 2x = 0? (You should be able to do
this by adding one state and one transition.)

Problem mac.9. Subtraction: Design a Turing machine that when given an
input of two non-empty strings of strokes of length n and m, where n > m,
computes the function f(n,m) = n−m.

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


q6start q7 q8

q9q10q11

q12 q13 q14

0, 0, R

0, 0, R

1, 1, R

1, 1, R

0, ▷, L

1, 1, L
0, 0, R

1, 0, L

0, 0, L

▷, ▷,R
1, 1, R

0, 1, R

0, 0, R

1, 0, L

▷, 0, N

Figure mac.5: Moving a block of 1’s to the left

tur:mac:una:

fig:mover
Problem mac.10. Equality: Design a Turing machine to compute the follow-
ing function:

equality(n,m) =

{
1 if n = m

0 if n ̸= m

where n and m ∈ Z+.

Problem mac.11. Design a Turing machine to compute the function min(x, y)
where x and y are positive integers represented on the tape by strings of 1’s
separated by a 0. You may use additional symbols in the alphabet of the
machine.

The function min selects the smallest value from its arguments, so min(3, 5) =
3, min(20, 16) = 16, and min(4, 4) = 4, and so on.

Definition mac.15. A Turing machineM computes the partial function f : Nk 7→
N iff,

1. M halts on input 1n1 ⌢ 0 ⌢ . . . ⌢ 0 ⌢ 1nk with output 1m if
f(n1, . . . , nk) = m.

2. M does not halt at all, or with an output that is not a single block of 1’s
if f(n1, . . . , nk) is undefined.

12 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


mac.6 Halting States

tur:mac:hal:
sec

explanationAlthough we have defined our machines to halt only when there is no instruction
to carry out, common representations of Turing machines have a dedicated
halting state h, such that h ∈ Q.

The idea behind a halting state is simple: when the machine has finished
operation (it is ready to accept input, or has finished writing the output), it
goes into a state h where it halts. Some machines have two halting states, one
that accepts input and one that rejects input.

Example mac.16. Halting States. To elucidate this concept, let us begin
with an alteration of the even machine. Instead of having the machine halt in
state q0 if the input is even, we can add an instruction to send the machine
into a halting state.

q0start q1

h

1, 1, R

0, 0, N

0, 0, R

1, 1, R

Let us further expand the example. When the machine determines that
the input is odd, it never halts. We can alter the machine to include a reject
state by replacing the looping instruction with an instruction to go to a reject
state r.

q0start q1

h r

1, 1, R

0, 0, N 0, 0, N

1, 1, R

explanationAdding a dedicated halting state can be advantageous in cases like this,
where it makes explicit when the machine accepts/rejects certain inputs. How-
ever, it is important to note that no computing power is gained by adding
a dedicated halting state. Similarly, a less formal notion of halting has its

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


own advantages. The definition of halting used so far in this chapter makes
the proof of the Halting Problem intuitive and easy to demonstrate. For this
reason, we continue with our original definition.

mac.7 Disciplined Machines

tur:mac:dis:
sec

explanation In section section mac.6, we considered Turing machines that have a single,
designated halting state h—such machines are guaranteed to halt, if they halt
at all, in state h. In this way, machines with a single halting state are more
“disciplined” than we allow Turing machines in general to be. There are other
restrictions we might impose on the behavior of Turing machines. For instance,
we also have not prohibited Turing machines from ever erasing the tape-end
marker on square 0, or to attempt to move left from square 0. (Our definition
states that the head simply stays on square 0 in this case; other definitions
have the machine halt.) It is likewise sometimes desirable to be able to assume
that a Turing machine, if it halts at all, halts on square 1.

Definition mac.17. tur:mac:dis:

defn:disciplined

A Turing machine M is disciplined iff

1. it has a designated single halting state h,

2. it halts, if it halts at all, while scanning square 1,

3. it never erases the ▷ symbol on square 0, and

4. it never attempts to move left from square 0.

explanation We have already discussed that any Turing machine can be changed into
one with the same behavior but with a designated halting state. This is done
simply by adding a new state h, and adding an instruction δ(q, σ) = ⟨h, σ,N⟩
for any pair ⟨q, σ⟩ where the original δ is undefined. It is true, although tedious
to prove, that any Turing machine M can be turned into a disciplined Turing
machine M ′ which halts on the same inputs and produces the same output.
For instance, if the Turing machine halts and is not on square 1, we can add
some instructions to make the head move left until it finds the tape-end marker,
then move one square to the right, then halt. We’ll leave you to think about
how the other conditions can be dealt with.

Example mac.18. In Figure mac.6, we turn the addition machine from Ex-
ample mac.12 into a disciplined machine.

Proposition mac.19. tur:mac:dis:

prop:disciplined

For every Turing machine M , there is a disciplined
Turing machine M ′ which halts with output O if M halts with output O, and
does not halt if M does not halt. In particular, any function f : Nn → N
computable by a Turing machine is also computable by a disciplined Turing
machine.

Problem mac.12. Give a disciplined machine that computes f(x) = x+ 1.

14 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


q0start q1

q2

q3h

0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

▷, ▷,R

Figure mac.6: A disciplined addition machine

tur:mac:dis:

fig:adder-disc

Problem mac.13. Find a disciplined machine which, when started on input
1n produces output 1n ⌢ 0 ⌢ 1n.

mac.8 Combining Turing Machines

tur:mac:cmb:
sec

explanationThe examples of Turing machines we have seen so far have been fairly simple
in nature. But in fact, any problem that can be solved with any modern
programming language can also be solved with Turing machines. To build
more complex Turing machines, it is important to convince ourselves that we
can combine them, so we can build machines to solve more complex problems by
breaking the procedure into simpler parts. If we can find a natural way to break
a complex problem down into constituent parts, we can tackle the problem in
several stages, creating several simple Turing machines and combining them
into one machine that can solve the problem. This point is especially important
when tackling the Halting Problem in the next section.

How do we combine Turing machinesM = ⟨Q,Σ, q0, δ⟩ andM ′ = ⟨Q′, Σ′, q′0, δ
′⟩?

We now use the configuration of the tape after M has halted as the input con-
figuration of a run of machine M ′. To get a single Turing machine M ⌢ M ′

that does this, do the following:

1. Renumber (or relabel) all the states Q′ of M ′ so that M and M ′ have no
states in common (Q ∩Q′ = ∅).

2. The states of M ⌢ M ′ are Q ∪Q′.

3. The tape alphabet is Σ ∪Σ′.

4. The start state is q0.

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


5. The transition function is the function δ′′ given by:

δ′′(q, σ) =


δ(q, σ) if q ∈ Q

δ′(q, σ) if q ∈ Q′

⟨q′0, σ,N⟩ if q ∈ Q and δ(q, σ) is undefined

The resulting machine uses the instructions of M when it is in a state q ∈ Q,
the instructions of M ′ when it is in a state q ∈ Q′. When it is in a state q ∈ Q
and is scanning a symbol σ for which M has no transition (i.e., M would have
halted), it enters the start state of M ′ (and leaves the tape contents and head
position as it is).

Note that unless the machine M is disciplined, we don’t know where the
tape head is when M halts, so the halting configuration of M need not have
the head scanning square 1. When combining machines, it’s important to keep
this in mind.

Example mac.20. Combining Machines: We’ll design a machine which, when
started on input consisting of two blocks of 1’s of length n and m, halts with a
single block of 2(m+n) 1’s on the tape. In order to build this machine, we can
combine two machines we are already familiar with: the addition machine, and
the doubler. We begin by drawing a state diagram for the addition machine.

q0start q1 q2
0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, N

Instead of halting in state q2, we want to continue operation in order to double
the output. Recall that the doubler machine erases the first stroke in the input
and writes two strokes in a separate output. Let’s add an instruction to make
sure the tape head is reading the first stroke of the output of the addition
machine.

q0start q1 q2

q3

q4

0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

▷, ▷,R

16 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


q0start q1 q2

q3

q4 q5 q6

q7q8q9

0, 1, N

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

▷, ▷,R

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, R

0, 1, L

1, 1, L

1, 1, L

0, 0, L

1, 1, L

0, 0, R

Figure mac.7: Combining adder and doubler machines

tur:mac:cmb:

fig:combined

It is now easy to double the input—all we have to do is connect the doubler
machine onto state q4. This requires renaming the states of the doubler machine
so that they start at q4 instead of q0—this way we don’t end up with two
starting states. The final diagram should look as in Figure mac.7.

Proposition mac.21. If M and M ′ are disciplined and compute the functions
f : Nk → N and f ′ : N → N, respectively, then M ⌢ M ′ is disciplined and
computes f ′ ◦ f .

Proof. SinceM is disciplined, when it halts with output f(n1, . . . , nk) = m, the
head is scanning square 1. If we now enter the start state of M ′, the machine
will halt with output f ′(m), again scanning square 1. The other conditions of
Definition mac.17 are also satisfied.

Problem mac.14. Give a disciplined Turing machine computing f(x) = x+2
by taking the machine M from Problem mac.12 and construct M ⌢ M .

machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY 17

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


mac.9 Variants of Turing Machines

tur:mac:var:
sec

There are in fact many possible ways to define Turing machines, of which ours
is only one. In some ways, our definition is more liberal than others. We allow
arbitrary finite alphabets, a more restricted definition might allow only two
tape symbols, 1 and 0. We allow the machine to write a symbol to the tape
and move at the same time, other definitions allow either writing or moving. We
allow the possibility of writing without moving the tape head, other definitions
leave out the N “instruction.” In other ways, our definition is more restrictive.
We assumed that the tape is infinite in one direction only, other definitions
allow the tape to be infinite both to the left and the right. In fact, one can
even allow any number of separate tapes, or even an infinite grid of squares.
We represent the instruction set of the Turing machine by a transition function;
other definitions use a transition relation where the machine has more than one
possible instruction in any given situation.

This last relaxation of the definition is particularly interesting. In our
definition, when the machine is in state q reading symbol σ, δ(q, σ) determines
what the new symbol, state, and tape head position is. But if we allow the
instruction set to be a relation between current state-symbol pairs ⟨q, σ⟩ and
new state-symbol-direction triples ⟨q′, σ′, D⟩, the action of the Turing machine
may not be uniquely determined—the instruction relation may contain both
⟨q, σ, q′, σ′, D⟩ and ⟨q, σ, q′′, σ′′, D′⟩. In this case we have a non-deterministic
Turing machine. These play an important role in computational complexity
theory.

There are also different conventions for when a Turing machine halts: we
say it halts when the transition function is undefined, other definitions require
the machine to be in a special designated halting state. We have explained
in section mac.6 why requiring a designated halting state is not a restriction
which impacts what Turing machines can compute. Since the tapes of our
Turing machines are infinite in one direction only, there are cases where a
Turing machine can’t properly carry out an instruction: if it reads the leftmost
square and is supposed to move left. According to our definition, it just stays
put instead of “falling off”, but we could have defined it so that it halts when
that happens. This definition is also equivalent: we could simulate the behavior
of a Turing machine that halts when it attempts to move left from square 0
by deleting every transition δ(q, ▷) = ⟨q′, σ, L⟩—then instead of attempting to
move left on ▷ the machine halts.1

There are also different ways of representing numbers (and hence the input-
output function computed by a Turing machine): we use unary representation,
but you can also use binary representation. This requires two symbols in
addition to 0 and ▷.

Now here is an interesting fact: none of these variations matters as to which
functions are Turing computable. If a function is Turing computable according

1This doesn’t quite work, since nothing prevents us from writing and reading ▷ on squares
other than square 0 (see Example mac.14). We can get around that by adding a second ▷′

symbol to use instead for such a purpose.

18 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


to one definition, it is Turing computable according to all of them.

We won’t go into the details of verifying this. Here’s just one example: we
gain no additional computing power by allowing a tape that is infinite in both
directions, or multiple tapes. The reason is, roughly, that a Turing machine
with a single one-way infinite tape can simulate multiple or two-way infinite
tapes. E.g., using additional states and instructions, we can “translate” a
program for a machine with multiple tapes or two-way infinite tape into one
with a single one-way infinite tape. The translated machine can use the even
squares for the squares of tape 1 (or the “positive” squares of a two-way infinite
tape) and the odd squares for the squares of tape 2 (or the “negative” squares).

mac.10 The Church–Turing Thesis

tur:mac:ctt:
sec

Turing machines are supposed to be a precise replacement for the concept of an
effective procedure. Turing thought that anyone who grasped both the concept
of an effective procedure and the concept of a Turing machine would have the
intuition that anything that could be done via an effective procedure could be
done by Turing machine. This claim is given support by the fact that all the
other proposed precise replacements for the concept of an effective procedure
turn out to be extensionally equivalent to the concept of a Turing machine
—that is, they can compute exactly the same set of functions. This claim is
called the Church–Turing thesis.

Definition mac.22 (Church–Turing thesis). The Church–Turing Thesis states
that anything computable via an effective procedure is Turing computable.

The Church–Turing thesis is appealed to in two ways. The first kind of
use of the Church–Turing thesis is an excuse for laziness. Suppose we have a
description of an effective procedure to compute something, say, in “pseudo-
code.” Then we can invoke the Church–Turing thesis to justify the claim that
the same function is computed by some Turing machine, even if we have not
in fact constructed it.

The other use of the Church–Turing thesis is more philosophically interest-
ing. It can be shown that there are functions which cannot be computed by
Turing machines. From this, using the Church–Turing thesis, one can conclude
that it cannot be effectively computed, using any procedure whatsoever. For
if there were such a procedure, by the Church–Turing thesis, it would follow
that there would be a Turing machine for it. So if we can prove that there is
no Turing machine that computes it, there also can’t be an effective procedure.
In particular, the Church–Turing thesis is invoked to claim that the so-called
halting problem not only cannot be solved by Turing machines, it cannot be

19



effectively solved at all.

Photo Credits

20 machines-computations rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Bibliography

21


	Turing Machine Computations
	Introduction
	Representing Turing Machines
	Turing Machines
	Configurations and Computations
	Unary Representation of Numbers
	Halting States
	Disciplined Machines
	Combining Turing Machines
	Variants of Turing Machines
	The Church–Turing Thesis

	Photo Credits
	Bibliography

