
Chapter udf

Turing Machine Computations

mac.1 Introduction

tur:mac:int:
sec

What does it mean for a function, say, from N to N to be computable?
Among the first answers, and the most well known one, is that a function is
computable if it can be computed by a Turing machine. This notion was set
out by Alan Turing in 1936. Turing machines are an example of a model of
computation—they are a mathematically precise way of defining the idea of
a “computational procedure.” What exactly that means is debated, but it is
widely agreed that Turing machines are one way of specifying computational
procedures. Even though the term “Turing machine” evokes the image of a
physical machine with moving parts, strictly speaking a Turing machine is a
purely mathematical construct, and as such it idealizes the idea of a compu-
tational procedure. For instance, we place no restriction on either the time
or memory requirements of a Turing machine: Turing machines can compute
something even if the computation would require more storage space or more
steps than there are atoms in the universe.

explanationIt is perhaps best to think of a Turing machine as a program for a special
kind of imaginary mechanism. This mechanism consists of a tape and a read-
write head. In our version of Turing machines, the tape is infinite in one
direction (to the right), and it is divided into squares, each of which may
contain a symbol from a finite alphabet. Such alphabets can contain any number
of different symbols, say, but we will mainly make do with three: ., 0, and 1.
When the mechanism is started, the tape is empty (i.e., each square contains the
symbol 0) except for the leftmost square, which contains ., and a finite number
of squares which contain the input. At any time, the mechanism is in one of a
finite number of states. At the outset, the head scans the leftmost square and
in a specified initial state. At each step of the mechanism’s run, the content
of the square currently scanned together with the state the mechanism is in
and the Turing machine program determine what happens next. The Turing
machine program is given by a partial function which takes as input a state q
and a symbol σ and outputs a triple 〈q′, σ′, D〉. Whenever the mechanism is in

1



tur:mac:int:

fig:tm

Figure mac.1: A Turing machine executing its program.

state q and reads symbol σ, it replaces the symbol on the current square with
σ′, the head moves left, right, or stays put according to whether D is L, R, or
N , and the mechanism goes into state q′.

For instance, consider the situation in section mac.1. The visible part of the
tape of the Turing machine contains the end-of-tape symbol . on the leftmost
square, followed by three 1’s, a 0, and four more 1’s. The head is reading the
third square from the left, which contains a 1, and is in state q1—we say “the
machine is reading a 1 in state q1.” If the program of the Turing machine
returns, for input 〈q1, 1〉, the triple 〈q2, 0, N〉, the machine would now replace
the 1 on the third square with a 0, leave the read/write head where it is, and
switch to state q2. If then the program returns 〈q3, 0, R〉 for input 〈q2, 0〉, the
machine would now overwrite the 0 with another 0 (effectively, leaving the
content of the tape under the read/write head unchanged), move one square
to the right, and enter state q3. And so on.

We say that the machine halts when it encounters some state, qn, and sym-
bol, σ such that there is no instruction for 〈qn, σ〉, i.e., the transition function
for input 〈qn, σ〉 is undefined. In other words, the machine has no instruction
to carry out, and at that point, it ceases operation. Halting is sometimes rep-
resented by a specific halt state h. This will be demonstrated in more detail
later on.

digression The beauty of Turing’s paper, “On computable numbers,” is that he presents
not only a formal definition, but also an argument that the definition captures
the intuitive notion of computability. From the definition, it should be clear
that any function computable by a Turing machine is computable in the intu-
itive sense. Turing offers three types of argument that the converse is true, i.e.,
that any function that we would naturally regard as computable is computable
by such a machine. They are (in Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

3. Giving examples of large classes of numbers which are computable.

2 machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Our goal is to try to define the notion of computability “in principle,” i.e.,
without taking into account practical limitations of time and space. Of course,
with the broadest definition of computability in place, one can then go on
to consider computation with bounded resources; this forms the heart of the
subject known as “computational complexity.”

Historical Remarks Alan Turing invented Turing machines in 1936. While
his interest at the time was the decidability of first-order logic, the paper has
been described as a definitive paper on the foundations of computer design.
In the paper, Turing focuses on computable real numbers, i.e., real numbers
whose decimal expansions are computable; but he notes that it is not hard
to adapt his notions to computable functions on the natural numbers, and
so on. Notice that this was a full five years before the first working general
purpose computer was built in 1941 (by the German Konrad Zuse in his par-
ent’s living room), seven years before Turing and his colleagues at Bletchley
Park built the code-breaking Colossus (1943), nine years before the American
ENIAC (1945), twelve years before the first British general purpose computer—
the Manchester Small-Scale Experimental Machine—was built in Manchester
(1948), and thirteen years before the Americans first tested the BINAC (1949).
The Manchester SSEM has the distinction of being the first stored-program
computer—previous machines had to be rewired by hand for each new task.

tms.2 Representing Turing Machines

tms:tms:rep:
sec

explanationTuring machines can be represented visually by state diagrams. The dia-
grams are composed of state cells connected by arrows. Unsurprisingly, each
state cell represents a state of the machine. Each arrow represents an instruc-
tion that can be carried out from that state, with the specifics of the instruction
written above or below the appropriate arrow. Consider the following machine,
which has only two internal states, q0 and q1, and one instruction:

q0start q1
0, 1, R

Recall that the Turing machine has a read/write head and a tape with the
input written on it. The instruction can be read as if reading a blank in state
q0, write a stroke, move right, and move to state q1. This is equivalent to the
transition function mapping 〈q0, 0〉 to 〈q1, 1, R〉.

Example tms.1. Even Machine: The following Turing machine halts if, and

machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


only if, there are an even number of strokes on the tape.

q0start q1

1, 1, R

0, 0, R

1, 1, R

The state diagram corresponds to the following transition function:

δ(q0, 1) = 〈q1, 1, R〉,
δ(q1, 1) = 〈q0, 1, R〉,
δ(q1, 0) = 〈q1, 0, R〉

explanation The above machine halts only when the input is an even number of strokes.
Otherwise, the machine (theoretically) continues to operate indefinitely. For
any machine and input, it is possible to trace through the configurations of
the machine in order to determine the output. We will give a formal definition
of configurations later. For now, we can intuitively think of configurations as
a series of diagrams showing the state of the machine at any point in time
during operation. Configurations show the content of the tape, the state of the
machine and the location of the read/write head.

Let us trace through the configurations of the even machine if it is started
with an input of 4 1s. In this case, we expect that the machine will halt. We
will then run the machine on an input of 3 1s, where the machine will run
forever.

The machine starts in state q0, scanning the leftmost 1. We can represent
the initial state of the machine as follows:

.101110 . . .

The above configuration is straightforward. As can be seen, the machine starts
in state one, scanning the leftmost 1. This is represented by a subscript of the
state name on the first 1. The applicable instruction at this point is δ(q0, 1) =
〈q1, 1, R〉, and so the machine moves right on the tape and changes to state q1.

.111110 . . .

Since the machine is now in state q1 scanning a stroke, we have to “follow” the
instruction δ(q1, 1) = 〈q0, 1, R〉. This results in the configuration

.111010 . . .

As the machine continues, the rules are applied again in the same order, re-
sulting in the following two configurations:

.111110 . . .

4 machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


.111100 . . .

The machine is now in state q0 scanning a blank. Based on the transition
diagram, we can easily see that there is no instruction to be carried out, and
thus the machine has halted. This means that the input has been accepted.

Suppose next we start the machine with an input of three strokes. The first
few configurations are similar, as the same instructions are carried out, with
only a small difference of the tape input:

.10110 . . .

.11110 . . .

.11100 . . .

.11101 . . .

The machine has now traversed past all the strokes, and is reading a blank
in state q1. As shown in the diagram, there is an instruction of the form
δ(q1, 0) = 〈q1, 0, R〉. Since the tape is infinitely blank to the right, the machine
will continue to execute this instruction forever, staying in state q1 and moving
ever further to the right. The machine will never halt, and does not accept the
input.

explanationIt is important to note that not all machines will halt. If halting means that
the machine runs out of instructions to execute, then we can create a machine
that never halts simply by ensuring that there is an outgoing arrow for each
symbol at each state. The even machine can be modified to run infinitely by
adding an instruction for scanning a blank at q0.

Example tms.2.

q0start q1

1, 1, R

0, 0, R 0, 0, R

1, 1, R

explanationMachine tables are another way of representing Turing machines. Machine
tables have the tape alphabet displayed on the x-axis, and the set of machine
states across the y-axis. Inside the table, at the intersection of each state and
symbol, is written the rest of the instruction—the new state, new symbol, and
direction of movement. Machine tables make it easy to determine in what
state, and for what symbol, the machine halts. Whenever there is a gap in the
table is a possible point for the machine to halt. Unlike state diagrams and
instruction sets, where the points at which the machine halts are not always
immediately obvious, any halting points are quickly identified by finding the
gaps in the machine table.

machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Example tms.3. The machine table for the even machine is:

0 1
q0 1, q1, R
q1 0, q1, 0 1, q0, R

As we can see, the machine halts when scanning a blank in state q0.

explanation So far we have only considered machines that read and accept input. How-
ever, Turing machines have the capacity to both read and write. An example
of such a machine (although there are many, many examples) is a doubler. A
doubler, when started with a block of n strokes on the tape, outputs a block
of 2n strokes.

Example tms.4. tms:tms:rep:

ex:doubler

Before building a doubler machine, it is important to come
up with a strategy for solving the problem. Since the machine (as we have
formulated it) cannot remember how many strokes it has read, we need to
come up with a way to keep track of all the strokes on the tape. One such way
is to separate the output from the input with a blank. The machine can then
erase the first stroke from the input, traverse over the rest of the input, leave a
blank, and write two new strokes. The machine will then go back and find the
second stroke in the input, and double that one as well. For each one stroke of
input, it will write two strokes of output. By erasing the input as the machine
goes, we can guarantee that no stroke is missed or doubled twice. When the
entire input is erased, there will be 2n strokes left on the tape.

q0start q1 q2

q3q4q5

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, R

0, 1, L

1, 1, L

1, 1, L

0, 0, L

1, 1, L

0, 0, R

Problem tms.1. Choose an arbitary input and trace through the configura-
tions of the doubler machine in Example tms.4.

Problem tms.2. The double machine in Example tms.4 writes its output to
the right of the input. Come up with a new method for solving the doubler
problem which generates its output immediately to the right of the end-of-tape
marker. Build a machine that executes your method. Check that your machine
works by tracing through the configurations.

6 machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Problem tms.3. Design a Turing-machine with alphabet {0, A,B} that ac-
cepts any string of As and Bs where the number of As is the same as the
number of Bs and all the As precede all the Bs, and rejects any string where
the number of As is not equal to the number of Bs or the As do not precede all
the Bs. (E.g., the machine should accept AABB, and AAABBB, but reject
both AAB and AABBAABB.)

Problem tms.4. Design a Turing-machine with alphabet {0, A,B} that takes
as input any string α of As and Bs and duplicates them to produce an output
of the form αα. (E.g. input ABBA should result in output ABBAABBA).

Problem tms.5. Alphabetical?: Design a Turing-machine with alphabet {0, A,B}
that when given as input a finite sequence of As and Bs checks to see if all the
As appear left of all the Bs or not. The machine should leave the input string
on the tape, and output either halt if the string is “alphabetical”, or loop
forever if the string is not.

Problem tms.6. Alphabetizer: Design a Turing-machine with alphabet {0, A,B}
that takes as input a finite sequence of As and Bs rearranges them so that all
the As are to the left of all the Bs. (e.g., the sequence BABAA should be-
come the sequence AAABB, and the sequence ABBABB should become the
sequence AABBBB).

mac.3 Turing Machines

tur:mac:tur:
sec

explanationThe formal definition of what constitutes a Turing machine looks abstract,
but is actually simple: it merely packs into one mathematical structure all the
information needed to specify the workings of a Turing machine. This includes
(1) which states the machine can be in, (2) which symbols are allowed to be
on the tape, (3) which state the machine should start in, and (4) what the
instruction set of the machine is.

Definition mac.5 (Turing machine). A Turing machine T = 〈Q,Σ, q0, δ〉
consists of

1. a finite set of states Q,

2. a finite alphabet Σ which includes . and 0,

3. an initial state q0 ∈ Q,

4. a finite instruction set δ : Q×Σ 7→ Q×Σ × {L,R,N}.

The partial function δ is also called the transition function of T .

explanationWe assume that the tape is infinite in one direction only. For this reason
it is useful to designate a special symbol . as a marker for the left end of the
tape. This makes it easier for Turing machine programs to tell when they’re
“in danger” of running off the tape.

machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Example mac.6. Even Machine: The even machine is formally the quadruple
〈Q,Σ, q0, δ〉 where

Q = {q0, q1}
Σ = {., 0, 1},

δ(q0, 1) = 〈q1, 1, R〉,
δ(q1, 1) = 〈q0, 1, R〉,
δ(q1, 0) = 〈q1, 0, R〉.

tur.4 Configurations and Computations

cmp:tur:con:
sec

explanation Recall tracing through the configurations of the even machine earlier. The
imaginary mechanism consisting of tape, read/write head, and Turing machine
program is really just in intuitive way of visualizing what a Turing machine
computation is. Formally, we can define the computation of a Turing machine
on a given input as a sequence of configurations—and a configuration in turn
is a sequence of symbols (corresponding to the contents of the tape at a given
point in the computation), a number indicating the position of the read/write
head, and a state. Using these, we can define what the Turing machine M
computes on a given input.

Definition tur.7 (Configuration). A configuration of Turing machine M =
〈Q,Σ, q0, δ〉 is a triple 〈C, n, q〉 where

1. C ∈ Σ∗ is a finite sequence of symbols from Σ,

2. n ∈ N is a number < len(C), and

3. q ∈ Q

Intuitively, the sequence C is the content of the tape (symbols of all squares
from the leftmost square to the last non-blank or previously visited square), n
is the number of the square the read/write head is scanning (beginning with
0 being the number of the leftmost square), and q is the current state of the
machine.

explanation The potential input for a Turing machine is a sequence of symbols, usually
a sequence that encodes a number in some form. The initial configuration of
the Turing machine is that configuration in which we start the Turing machine
to work on that input: the tape contains the tape end marker immediately
followed by the input written on the squares to the right, the read/write head
is scanning the leftmost square of the input (i.e., the square to the right of the
left end marker), and the mechanism is in the designated start state q0.

Definition tur.8 (Initial configuration). The initial configuration of M for
input I ∈ Σ∗ is

〈. _ I, 1, q0〉

8 machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


explanationThe _ symbol is for concatenation—we want to ensure that there are no
blanks between the left end marker and the beginning of the input.

Definition tur.9. We say that a configuration 〈C, n, q〉 yields 〈C ′, n′, q′〉 in
one step (according to M), iff

1. the n-th symbol of C is σ,

2. the instruction set of M specifies δ(q, σ) = 〈q′, σ′, D〉,

3. the n-th symbol of C ′ is σ′, and

4. a) D = L and n′ = n− 1 if n > 0, otherwise n′ = 0, or

b) D = R and n′ = n+ 1, or

c) D = N and n′ = n,

5. if n′ > len(C), then len(C ′) = len(C) + 1 and the n′-th symbol of C ′ is 0.

6. for all i such that i < len(C ′) and i 6= n, C ′(i) = C(i),

Definition tur.10. A run of M on input I is a sequence Ci of configurations
of M , where C0 is the initial configuration of M for input I, and each Ci yields
Ci+1 in one step.

We say that M halts on input I after k steps if Ck = 〈C, n, q〉, the nth
symbol of C is σ, and δ(q, σ) is undefined. In that case, the output of M for
input I is O, where O is a string of symbols not beginning or ending in 0 such
that C = . _ 0i _ O _ 0j for some i, j ∈ N.

explanationAccording to this definition, the output O of M always begins and ends in
a symbol other than 0, or, if at time k the entire tape is filled with 0 (except
for the leftmost .), O is the empty string.

mac.5 Unary Representation of Numbers

tur:mac:una:
sec

explanationTuring machines work on sequences of symbols written on their tape. De-
pending on the alphabet a Turing machine uses, these sequences of symbols
can represent various inputs and outputs. Of particular interest, of course, are
Turing machines which compute arithmetical functions, i.e., functions of nat-
ural numbers. A simple way to represent positive integers is by coding them
as sequences of a single symbol 1. If n ∈ N, let 1n be the empty sequence if
n = 0, and otherwise the sequence consisting of exactly n 1’s.

Definition mac.11 (Computation). A Turing machine M computes the func-
tion f : Nn → N iff M halts on input

1k101k20 . . . 01kn

with output 1f(k1,...,kn).

machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Example mac.12. Addition: Build a machine that, when given an input
of two non-empty strings of 1’s of length n and m, computes the function
f(n,m) = n+m.

We want to come up with a machine that starts with two blocks of strokes
on the tape and halts with one block of strokes. We first need a method to
carry out. The input strokes are separated by a blank, so one method would
be to write a stroke on the square containing the blank, and erase the first (or
last) stroke. This would result in a block of n+m 1’s. Alternatively, we could
proceed in a similar way to the doubler machine, by erasing a stroke from the
first block, and adding one to the second block of strokes until the first block
has been removed completely. We will proceed with the former example.

q0start q1 q2
0, 1, R

1, 1, R 1, 1, R

0, 0, L

1, 0, N

Problem mac.7. Trace through the configurations of the machine for input
〈3, 5〉.

Problem mac.8. Subtraction: Design a Turing machine that when given an
input of two non-empty strings of strokes of length n and m, where n > m,
computes the function f(n,m) = n−m.

Problem mac.9. Equality: Design a Turing machine to compute the following
function:

equality(x, y) =

{
1 if x = y

0 if x 6= y

where x and y are integers greater than 0.

Problem mac.10. Design a Turing machine to compute the function min(x, y)
where x and y are positive integers represented on the tape by strings of 1’s
separated by a 0. You may use additional symbols in the alphabet of the
machine.

The function min selects the smallest value from its arguments, so min(3, 5) =
3, min(20, 16) = 16, and min(4, 4) = 4, and so on.

tur.6 Halting States

tur:tur:tur:
sec

explanation Although we have defined our machines to halt only when there is no in-
struction to carry out, common representations of Turing machines have a
dedicated halting state, h, such that h ∈ Q.

The idea behind a halting state is simple: when the machine has finished
operation (it is ready to accept input, or has finished writing the output), it
goes into a state h where it halts. Some machines have two halting states, one
that accepts input and one that rejects input.

10 machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Example tur.13. Halting States. To elucidate this concept, let us begin with
an alteration of the even machine. Instead of having the machine halt in state
q0 if the input is even, we can add an instruction to send the machine into a
halt state.

q0start q1

h

1, 1, R

0, 0, N

0, 0, R

1, 1, R

Let us further expand the example. When the machine determines that
the input is odd, it never halts. We can alter the machine to include a reject
state by replacing the looping instruction with an instruction to go to a reject
state r.

q0start q1

h r

1, 1, R

0, 0, N 0, 0, N

1, 1, R

explanationAdding a dedicated halting state can be advantageous in cases like this,
where it makes explicit when the machine accepts/rejects certain inputs. How-
ever, it is important to note that no computing power is gained by adding
a dedicated halting state. Similarly, a less formal notion of halting has its
own advantages. The definition of halting used so far in this chapter makes
the proof of the Halting Problem intuitive and easy to demonstrate. For this
reason, we continue with our original definition.

mac.7 Combining Turing Machines

tur:mac:cmb:
sec

explanationThe examples of Turing machines we have seen so far have been fairly simple
in nature. But in fact, any problem that can be solved with any modern
programming language can als o be solved with Turing machines. To build
more complex Turing machines, it is important to convince ourselves that we
can combine them, so we can build machines to solve more complex problems by

machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


breaking the procedure into simpler parts. If we can find a natural way to break
a complex problem down into constituent parts, we can tackle the problem
in several stages, creating several simple Turing machines and combining then
into one machine that can solve the problem. This point is especially important
when tackling the Halting Problem in the next section.

Example mac.14. Combining Machines: Design a machine that computes
the function f(m,n) = 2(m+ n).

In order to build this machine, we can combine two machines we are already
familiar with: the addition machine, and the doubler. We begin by drawing a
state diagram for the addition machine.

q0start q1 q2
0, 1, R

1, 1, R 1, 1, R

0, 0, L

1, 0, N

Instead of halting at state q2, we want to continue operation in order to double
the output. Recall that the doubler machine erases the first stroke in the input
and writes two strokes in a separate output. Let’s add an instruction to make
sure the tape head is reading the first stroke of the output of the addition
machine.

q0start q1 q2

q3

q4

0, 1, R

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

., .,R

It is now easy to double the input—all we have to do is connect the doubler
machine onto state q4. This requires renaming the states of the doubler machine
so that they start at q4 instead of q0—this way we don’t end up with two

12 machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


starting states. The final diagram should look like:

q0start q1 q2

q3

q4

q5q6q7

q8 q9

0, 1, R

1, 1, R 1, 1, R

0, 0, L

1, 0, L

1, 1, L

., .,R

1, 0, R

1, 1, R

0, 0, R

1, 1, R

0, 1, R
0, 1, L

1, 1, L

1, 1, L

0, 0, L

1, 1, L

0, 0, R

mac.8 Variants of Turing Machines

tur:mac:var:
sec

There are in fact many possible ways to define Turing machines, of which
ours is only one. In some ways, our definition is more liberal than others.
We allow arbitrary finite alphabets, a more restricted definition might allow
only two tape symbols, 1 and 0. We allow the machine to write a symbol to
the tape and move at the same time, other definitions allow either writing or
moving. We allow the possibility of writing without moving the tape head,
other definitions leave out the N “instruction.” In other ways, our definition
is more restrictive. We assumed that the tape is infinite in one direction only,
other definitions allow the tape to be infinite both to the left and the right.
In fact, one can even even allow any number of separate tapes, or even an
infinite grid of squares. We represent the instruction set of the Turing machine
by a transition function; other definitions use a transition relation where the
machine has more than one possible instruction in any given situation.

machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


This last relaxation of the definition is particularly interesting. In our
definition, when the machine is in state q reading symbol σ, δ(q, σ) determines
what the new symbol, state, and tape head position is. But if we allow the
instruction set to be a relation between current state-symbol pairs 〈q, σ〉 and
new state-symbol-direction triples 〈q′, σ′, D〉, the action of the Turing machine
may not be uniquely determined—the instruction relation may contain both
〈q, σ, q′, σ′, D〉 and 〈q, σ, q′′, σ′′, D′〉. In this case we have a non-deterministic
Turing machine. These play an important role in computational complexity
theory.

There are also different conventions for when a Turing machine halts: we
say it halts when the transition function is undefined, other definitions require
the machine to be in a special designated halting state. Since the tapes of our
turing machines are infinite in one direction only, there ae cases where a Turing
machine can’t properly carry out an instruction: if it reads the leftmost square
and is supposed to move left. According to our definition, it just stays put
instead, but we could have defined it so that it halts when that happens. There
are also different ways of representing numbers (and hence the input-output
function computed by a Turing machine): we use unary representation, but
you can also use binary representation (this requires two symbols in addition
to 0).

Now here is an interesting fact: none of these variations matters as to which
functions are Turing computable. If a function is Turing computable according
to one definition, it is Turing computable according to all of them.

mac.9 The Church-Turing Thesis

tur:mac:ctt:
sec

Turing machines are supposed to be a precise replacement for the concept
of an effective procedure. Turing took it that anyone who grasped the concept
of an effective procedure and the concept of a Turing machine would have the
intuition that anything that could be done via an effective procedure could be
done by Turing machine. This claim is given support by the fact that all the
other proposed precise replacements for the concept of an effective procedure
turn out to be extensionally equivalent to the concept of a Turing machine—
that is, they can compute exactly the same set of functions. This claim is called
the Church-Turing thesis.

Definition mac.15 (Church-Turing thesis). The Church-Turing Thesis states
that anything computable via an effective procedure is Turing computable.

The Church-Turing thesis is appealed to in two ways. The first kind of
use of the Church-Turing thesis is an excuse for laziness. Suppose we have a
description of an effective procedure to compute something, say, in “pseudo-
code.” Then we can invoke the Church-Turing thesis to justify the claim that
the same function is computed by some Turing machine, eve if we have not in
fact constructed it.

14 machines-computations rev: bf9d685 (2018-03-31) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


The other use of the Church-Turing thesis is more philosophically interest-
ing. It can be shown that there are functions whch cannot be computed by a
Turing machines. From this, using the Church-Turing thesis, one can conclude
that it cannot be effectively computed, using any procedure whatsoever. For
if there were such a procedure, by the Church-Turing thesis, it would follow
that there would be a Turing machine. So if we can prove that there is no
Turing machine that computes it, there also can’t be an effective procedure.
In particular, the Church-Turing thesis is invoked to claim that the so-called
halting problem not only cannot be solved by Turing machines, it cannot be
effectively solved at all.

Photo Credits

15



Bibliography

16


	Turing Machine Computations
	Introduction
	Representing Turing Machines
	Turing Machines
	Configurations and Computations
	Unary Representation of Numbers
	Halting States
	Combining Turing Machines
	Variants of Turing Machines
	The Church-Turing Thesis

	Photo Credits
	Bibliography

