tur.1 Configurations and Computations

cmp:tur:con: sec Recall tracing through the configurations of the even machine earlier. The imaginary mechanism consisting of tape, read/write head, and Turing machine program is really just in intuitive way of visualizing what a Turing machine computation is. Formally, we can define the computation of a Turing machine on a given input as a sequence of configurations—and a configuration in turn is a sequence of symbols (corresponding to the contents of the tape at a given point in the computation), a number indicating the position of the read/write head, and a state. Using these, we can define what the Turing machine M computes on a given input.

Definition tur.1 (Configuration). A configuration of Turing machine $M = \langle Q, \Sigma, q_0, \delta \rangle$ is a triple $\langle C, n, q \rangle$ where

- 1. $C \in \Sigma^*$ is a finite sequence of symbols from Σ ,
- 2. $n \in \mathbb{N}$ is a number $< \operatorname{len}(C)$, and
- 3. $q \in Q$

Intuitively, the sequence C is the content of the tape (symbols of all squares from the leftmost square to the last non-blank or previously visited square), n is the number of the square the read/write head is scanning (beginning with 0 being the number of the leftmost square), and q is the current state of the machine.

The potential input for a Turing machine is a sequence of symbols, usually a sequence that encodes a number in some form. The initial configuration of the Turing machine is that configuration in which we start the Turing machine to work on that input: the tape contains the tape end marker immediately followed by the input written on the squares to the right, the read/write head is scanning the leftmost square of the input (i.e., the square to the right of the left end marker), and the mechanism is in the designated start state q_0 .

Definition tur.2 (Initial configuration). The *initial configuration* of M for input $I \in \Sigma^*$ is

$$\langle \triangleright \frown I, 1, q_0 \rangle$$

The \frown symbol is for *concatenation*—we want to ensure that there are no explanation blanks between the left end marker and the beginning of the input.

Definition tur.3. We say that a configuration $\langle C, n, q \rangle$ yields $\langle C', n', q' \rangle$ in one step (according to M), iff

- 1. the *n*-th symbol of C is σ ,
- 2. the instruction set of M specifies $\delta(q, \sigma) = \langle q', \sigma', D \rangle$,
- 3. the *n*-th symbol of C' is σ' , and

1

- 4. a) D = L and n' = n 1 if n > 0, otherwise n' = 0, or
 - b) D = R and n' = n + 1, or
 - c) D = N and n' = n,
- 5. if n' > len(C), then len(C') = len(C) + 1 and the n'-th symbol of C' is 0.
- 6. for all i such that i < len(C') and $i \neq n$, C'(i) = C(i),

Definition tur.4. A run of M on input I is a sequence C_i of configurations of M, where C_0 is the initial configuration of M for input I, and each C_i yields C_{i+1} in one step.

We say that M halts on input I after k steps if $C_k = \langle C, n, q \rangle$, the nth symbol of C is σ , and $\delta(q, \sigma)$ is undefined. In that case, the output of M for input I is O, where O is a string of symbols not beginning or ending in 0 such that $C = \triangleright \frown 0^i \frown O \frown 0^j$ for some $i, j \in \mathbb{N}$.

explanation

According to this definition, the output O of M always begins and ends in a symbol other than 0, or, if at time k the entire tape is filled with 0 (except for the leftmost \triangleright), O is the empty string.

Photo Credits

Bibliography