Recall tracing through the configurations of the even machine earlier. The imaginary mechanism consisting of tape, read/write head, and Turing machine program is really just an intuitive way of visualizing what a Turing machine computation is. Formally, we can define the computation of a Turing machine on a given input as a sequence of configurations—and a configuration in turn is a sequence of symbols (corresponding to the contents of the tape at a given point in the computation), a number indicating the position of the read/write head, and a state. Using these, we can define what the Turing machine M computes on a given input.

Definition tur.1 (Configuration). A *configuration* of Turing machine $M = (Q, Σ, q_0, δ)$ is a triple $⟨C, n, q⟩$ where

1. $C ∈ Σ^*$ is a finite sequence of symbols from $Σ$,
2. $n ∈ N$ is a number $< \text{len}(C)$, and
3. $q ∈ Q$

Intuitively, the sequence C is the content of the tape (symbols of all squares from the leftmost square to the last non-blank or previously visited square), n is the number of the square the read/write head is scanning (beginning with 0 being the number of the leftmost square), and q is the current state of the machine.

The potential input for a Turing machine is a sequence of symbols, usually a sequence that encodes a number in some form. The initial configuration of the Turing machine is that configuration in which we start the Turing machine to work on that input: the tape contains the tape end marker immediately followed by the input written on the squares to the right, the read/write head is scanning the leftmost square of the input (i.e., the square to the right of the left end marker), and the mechanism is in the designated start state q_0.

Definition tur.2 (Initial configuration). The *initial configuration* of M for input $I ∈ Σ^*$ is

$⟨⊢ I, 1, q_0⟩$

The $⊢$ symbol is for *concatenation*—we want to ensure that there are no blanks between the left end marker and the beginning of the input.

Definition tur.3. We say that a configuration $⟨C, n, q⟩$ *yields* $⟨C', n', q'⟩$ *in one step* (according to M), iff

1. the n-th symbol of C is $σ$,
2. the instruction set of M specifies $δ(q, σ) = ⟨q', σ', D⟩$,
3. the n-th symbol of C' is $σ'$, and
4. a) $D = L$ and $n' = n - 1$ if $n > 0$, otherwise $n' = 0$, or
 b) $D = R$ and $n' = n + 1$, or
 c) $D = N$ and $n' = n$.

5. if $n' > \text{len}(C)$, then $\text{len}(C') = \text{len}(C) + 1$ and the n'-th symbol of C' is 0.

6. for all i such that $i < \text{len}(C')$ and $i \neq n$, $C'(i) = C(i)$,

Definition tur.4. A run of M on input I is a sequence C_i of configurations of M, where C_0 is the initial configuration of M for input I, and each C_i yields C_{i+1} in one step.

We say that M halts on input I after k steps if $C_k = \langle C, n, q \rangle$, the nth symbol of C is σ, and $\delta(q, \sigma)$ is undefined. In that case, the output of M for input I is O, where O is a string of symbols not beginning or ending in 0 such that $C = \triangleright 0^i \leadsto O \leadsto 0^j \triangleright$ for some $i, j \in \mathbb{N}$.

According to this definition, the output O of M always begins and ends in a symbol other than 0, or, if at time k the entire tape is filled with 0 (except for the leftmost \triangleright), O is the empty string.

Photo Credits

Bibliography