Chapter udf

Sets

set.1 Extensionality

A set is a collection of objects, considered as a single object. The objects making up the set are called elements or members of the set. If \(x \) is an element of a set \(a \), we write \(x \in a \); if not, we write \(x \notin a \). The set which has no elements is called the empty set and denoted “\(\emptyset \)”.

It does not matter how we specify the set, or how we order its elements, or indeed how many times we count its elements. All that matters are what its elements are. We codify this in the following principle.

Definition set.1 (Extensionality). If \(A \) and \(B \) are sets, then \(A = B \) iff every element of \(A \) is also an element of \(B \), and vice versa.

Extensionality licenses some notation. In general, when we have some objects \(a_1, \ldots, a_n \), then \(\{a_1, \ldots, a_n\} \) is the set whose elements are \(a_1, \ldots, a_n \). We emphasise the word “the”, since extensionality tells us that there can be only one such set. Indeed, extensionality also licenses the following:

\[
\{a, a, b\} = \{a, b\} = \{b, a\}.
\]

This delivers on the point that, when we consider sets, we don’t care about the order of their elements, or how many times they are specified.

Example set.2. Whenever you have a bunch of objects, you can collect them together in a set. The set of Richard’s siblings, for instance, is a set that contains one person, and we could write it as \(S = \{\text{Ruth}\} \). The set of positive integers less than 4 is \(\{1, 2, 3\} \), but it can also be written as \(\{3, 2, 1\} \) or even as \(\{1, 2, 1, 2, 3\} \). These are all the same set, by extensionality. For every element of \(\{1, 2, 3\} \) is also an element of \(\{3, 2, 1\} \) (and of \(\{1, 2, 1, 2, 3\} \)), and vice versa.

Frequently we’ll specify a set by some property that its elements share. We’ll use the following shorthand notation for that: \(\{x : \varphi(x)\} \), where the \(\varphi(x) \) stands for the property that \(x \) has to have in order to be counted among the elements of the set.
Example set.3. In our example, we could have specified S also as

$$S = \{ x : x \text{ is a sibling of Richard} \}.$$

Example set.4. A number is called *perfect* iff it is equal to the sum of its proper divisors (i.e., numbers that evenly divide it but aren’t identical to the number). For instance, 6 is perfect because its proper divisors are 1, 2, and 3, and $6 = 1 + 2 + 3$. In fact, 6 is the only positive integer less than 10 that is perfect. So, using extensionality, we can say:

$$\{6\} = \{ x : x \text{ is perfect and } 0 \leq x \leq 10 \}$$

We read the notation on the right as “the set of x’s such that x is perfect and $0 \leq x \leq 10$”. The identity here confirms that, when we consider sets, we don’t care about how they are specified. And, more generally, extensionality guarantees that there is always only one set of x’s such that $\varphi(x)$. So, extensionality justifies calling $\{ x : \varphi(x) \}$ the set of x’s such that $\varphi(x)$.

Extensionality gives us a way for showing that sets are identical: to show that $A = B$, show that whenever $x \in A$ then also $x \in B$, and whenever $y \in B$ then also $y \in A$.

Problem set.1. Prove that there is at most one empty set, i.e., show that if A and B are sets without elements, then $A = B$.

set.2 Subsets and Power Sets

We will often want to compare sets. And one obvious kind of comparison one might make is as follows: *everything in one set is in the other too*. This situation is sufficiently important for us to introduce some new notation.

Definition set.5 (Subset). If every element of a set A is also an element of B, then we say that A is a *subset* of B, and write $A \subseteq B$. If A is not a subset of B we write $A \nsubseteq B$. If $A \subseteq B$ but $A \neq B$, we write $A \subsetneq B$ and say that A is a *proper subset* of B.

Example set.6. Every set is a subset of itself, and \emptyset is a subset of every set. The set of even numbers is a subset of the set of natural numbers. Also, $\{a, b\} \subseteq \{a, b, c\}$. But $\{a, b, e\}$ is not a subset of $\{a, b, c\}$.

Example set.7. The number 2 is an *element* of the set of integers, whereas the set of even numbers is a subset of the set of integers. However, a set may happen to both be an *element* and a subset of some other set, e.g., $\{0\} \in \{0, \{0\}\}$ and also $\{0\} \subseteq \{0, \{0\}\}$.

Extensionality gives a criterion of identity for sets: $A = B$ iff every element of A is also an *element* of B and vice versa. The definition of “subset” defines $A \subseteq B$ precisely as the first half of this criterion: every *element* of A is also...
an element of B. Of course the definition also applies if we switch A and B: that is, $B \subseteq A$ iff every element of B is also an element of A. And that, in turn, is exactly the “vice versa” part of extensionality. In other words, extensionality entails that sets are equal iff they are subsets of one another.

Proposition set.8. $A = B$ iff both $A \subseteq B$ and $B \subseteq A$.

Now is also a good opportunity to introduce some further bits of helpful notation. In defining when A is a subset of B we said that “every element of A is . . .,” and filled the “. . .” with “an element of B”. But this is such a common shape of expression that it will be helpful to introduce some formal notation for it.

Definition set.9. $(\forall x \in A)\varphi$ abbreviates $\forall x(x \in A \rightarrow \varphi)$. Similarly, $(\exists x \in A)\varphi$ abbreviates $\exists x(x \in A \land \varphi)$.

Using this notation, we can say that $A \subseteq B$ iff $(\forall x \in A)x \in B$.

Now we move on to considering a certain kind of set: the set of all subsets of a given set.

Definition set.10 (Power Set). The set consisting of all subsets of a set A is called the **power set of** A, written $\wp(A)$.

$$\wp(A) = \{B : B \subseteq A\}$$

Example set.11. What are all the possible subsets of $\{a, b, c\}$? They are: $\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}$. The set of all these subsets is $\wp(\{a, b, c\})$:

$$\wp(\{a, b, c\}) = \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}$$

Problem set.2. List all subsets of $\{a, b, c, d\}$.

Problem set.3. Show that if A has n elements, then $\wp(A)$ has 2^n elements.

set.3 Some Important Sets

Example set.12. We will mostly be dealing with sets whose elements are mathematical objects. Four such sets are important enough to have specific
names:

\[\mathbb{N} = \{0, 1, 2, 3, \ldots\} \]

the set of natural numbers

\[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \]

the set of integers

\[\mathbb{Q} = \{m/n : m, n \in \mathbb{Z} \text{ and } n \neq 0\} \]

the set of rationals

\[\mathbb{R} = (−\infty, \infty) \]

the set of real numbers (the continuum)

These are all infinite sets, that is, they each have infinitely many elements.

As we move through these sets, we are adding more numbers to our stock. Indeed, it should be clear that \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \): after all, every natural number is an integer; every integer is a rational; and every rational is a real. Equally, it should be clear that \(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \), since \(-1\) is an integer but not a natural number, and \(1/2\) is rational but not integer. It is less obvious that \(\mathbb{R} \subset \mathbb{Q} \), i.e., that there are some real numbers which are not rational.

We’ll sometimes also use the set of positive integers \(\mathbb{Z}^+ = \{1, 2, 3, \ldots\} \) and the set containing just the first two natural numbers \(\mathbb{B} = \{0, 1\} \).

Example set.13 (Strings). Another interesting example is the set \(A^* \) of finite strings over an alphabet \(A \): any finite sequence of elements of \(A \) is a string over \(A \). We include the empty string \(\Lambda \) among the strings over \(A \), for every alphabet \(A \). For instance,

\[\mathbb{B}^* = \{A, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \ldots\}. \]

If \(x = x_1 \ldots x_n \in A^* \) is a string consisting of \(n \) “letters” from \(A \), then we say length of the string is \(n \) and write \(\text{len}(x) = n \).

Example set.14 (Infinite sequences). For any set \(A \) we may also consider the set \(A^\omega \) of infinite sequences of elements of \(A \). An infinite sequence \(a_1a_2a_3a_4\ldots \) consists of a one-way infinite list of objects, each one of which is an element of \(A \).

set.4 Unions and Intersections

In section set.1, we introduced definitions of sets by abstraction, i.e., definitions of the form \(\{x : \varphi(x)\} \). Here, we invoke some property \(\varphi \), and this property can mention sets we’ve already defined. So for instance, if \(A \) and \(B \) are sets, the set \(\{x : x \in A \lor x \in B\} \) consists of all those objects which are elements of either \(A \) or \(B \), i.e., it’s the set that combines the elements of \(A \) and \(B \). We
Figure set.1: The union $A \cup B$ of two sets is set of elements of A together with those of B.

can visualize this as in Figure set.1, where the highlighted area indicates the elements of the two sets A and B together.

This operation on sets—combining them—is very useful and common, and so we give it a formal name and a symbol.

Definition set.15 (Union). The union of two sets A and B, written $A \cup B$, is the set of all things which are elements of A, B, or both.

$$A \cup B = \{ x : x \in A \lor x \in B \}$$

Example set.16. Since the multiplicity of elements doesn’t matter, the union of two sets which have an element in common contains that element only once, e.g., $\{a, b, c\} \cup \{a, 0, 1\} = \{a, b, c, 0, 1\}$.

The union of a set and one of its subsets is just the bigger set: $\{a, b, c\} \cup \{a\} = \{a, b, c\}$.

The union of a set with the empty set is identical to the set: $\{a, b, c\} \cup \emptyset = \{a, b, c\}$.

Problem set.4. Prove that if $A \subseteq B$, then $A \cup B = B$.

We can also consider a “dual” operation to union. This is the operation that forms the set of all elements that are elements of A and are also elements of B. This operation is called intersection, and can be depicted as in Figure set.2.

Definition set.17 (Intersection). The intersection of two sets A and B, written $A \cap B$, is the set of all things which are elements of both A and B.

$$A \cap B = \{ x : x \in A \land x \in B \}$$

Two sets are called disjoint if their intersection is empty. This means they have no elements in common.

Example set.18. If two sets have no elements in common, their intersection is empty: $\{a, b, c\} \cap \{0, 1\} = \emptyset$.

sets rev: d4e99d0 (2023-10-08) by OLP / CC–BY
If two sets do have elements in common, their intersection is the set of all those: \(\{a, b, c\} \cap \{a, b, d\} = \{a, b\} \).

The intersection of a set with one of its subsets is just the smaller set: \(\{a, b, c\} \cap \{a, b\} = \{a, b\} \).

The intersection of any set with the empty set is empty: \(\{a, b, c\} \cap \emptyset = \emptyset \).

Problem set.5. Prove rigorously that if \(A \subseteq B \), then \(A \cap B = A \).

We can also form the union or intersection of more than two sets. An elegant way of dealing with this in general is the following: suppose you collect all the sets you want to form the union (or intersection) of into a single set. Then we can define the union of all our original sets as the set of all objects which belong to at least one element of the set, and the intersection as the set of all objects which belong to every element of the set.

Definition set.19. If \(A \) is a set of sets, then \(S_A \) is the set of elements of elements of \(A \):

\[
S_A = \{x : x \text{ belongs to an element of } A\}, \text{ i.e., } \{x : \text{there is a } B \in A \text{ so that } x \in B\}
\]

Definition set.20. If \(A \) is a set of sets, then \(T_A \) is the set of objects which all elements of \(A \) have in common:

\[
T_A = \{x : x \text{ belongs to every element of } A\}, \text{ i.e., } \{x : \text{for all } B \in A, x \in B\}
\]

Example set.21. Suppose \(A = \{\{a, b\}, \{a, d, e\}, \{a, d\}\} \). Then \(\bigcup A = \{a, b, d, e\} \) and \(\bigcap A = \{a\} \).

Problem set.6. Show that if \(A \) is a set and \(A \subseteq B \), then \(A \subseteq \bigcup B \).
Figure set.3: The difference $A \setminus B$ of two sets is the set of those elements of A which are not also elements of B.

We could also do the same for a sequence of sets A_1, A_2, \ldots

$$\bigcup_i A_i = \{x : x \text{ belongs to one of the } A_i\}$$

$$\bigcap_i A_i = \{x : x \text{ belongs to every } A_i\}.$$

When we have an index of sets, i.e., some set I such that we are considering A_i for each $i \in I$, we may also use these abbreviations:

$$\bigcup_{i \in I} A_i = \bigcup\{A_i : i \in I\}$$

$$\bigcap_{i \in I} A_i = \bigcap\{A_i : i \in I\}.$$

Finally, we may want to think about the set of all elements in A which are not in B. We can depict this as in Figure set.3.

Definition set.22 (Difference). The set difference $A \setminus B$ is the set of all elements of A which are not also elements of B, i.e.,

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$$

Problem set.7. Prove that if $A \subseteq B$, then $B \setminus A \neq \emptyset$.

set.5 Pairs, Tuples, Cartesian Products

It follows from extensionality that sets have no order to their elements. So if we want to represent order, we use ordered pairs (x, y). In an unordered pair \{x, y\}, the order does not matter: \{x, y\} = \{y, x\}. In an ordered pair, it does: if $x \neq y$, then $(x, y) \neq (y, x)$.
How should we think about ordered pairs in set theory? Crucially, we want to preserve the idea that ordered pairs are identical iff they share the same first element and share the same second element, i.e.:

\[(a, b) = (c, d) \text{ iff both } a = c \text{ and } b = d. \]

We can define ordered pairs in set theory using the Wiener-Kuratowski definition.

Definition set.23 (Ordered pair). \(\langle a, b \rangle = \{ \{a\}, \{a, b\} \}. \)

Problem set.8. Using Definition set.23, prove that \(\langle a, b \rangle = \langle c, d \rangle \) iff both \(a = c \) and \(b = d \).

Having fixed a definition of an ordered pair, we can use it to define further sets. For example, sometimes we also want ordered sequences of more than two objects, e.g., *triples* \(\langle x, y, z \rangle \), *quadruples* \(\langle x, y, z, u \rangle \), and so on. We can think of triples as special ordered pairs, where the first element is itself an ordered pair: \(\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle \). The same is true for quadruples: \(\langle x, y, z, u \rangle = \langle \langle \langle x, y \rangle, z \rangle, u \rangle \), and so on. In general, we talk of *ordered* \(n \)-tuples \(\langle x_1, \ldots, x_n \rangle \).

Certain sets of ordered pairs, or other ordered \(n \)-tuples, will be useful.

Definition set.24 (Cartesian product). Given sets \(A \) and \(B \), their *Cartesian product* \(A \times B \) is defined by

\[A \times B = \{ \langle x, y \rangle : x \in A \text{ and } y \in B \}. \]

Example set.25. If \(A = \{0, 1\} \), and \(B = \{1, a, b\} \), then their product is

\[A \times B = \{ \langle 0, 1 \rangle, \langle 0, a \rangle, \langle 0, b \rangle, \langle 1, 1 \rangle, \langle 1, a \rangle, \langle 1, b \rangle \}. \]

Example set.26. If \(A \) is a set, the product of \(A \) with itself, \(A \times A \), is also written \(A^2 \). It is the set of *all* pairs \(\langle x, y \rangle \) with \(x, y \in A \). The set of all triples \(\langle x, y, z \rangle \) is \(A^3 \), and so on. We can give a recursive definition:

\[
A^1 = A \\
A^{k+1} = A^k \times A
\]

Problem set.9. List all elements of \(\{1, 2, 3\}^3 \).

Proposition set.27. If \(A \) has \(n \) elements and \(B \) has \(m \) elements, then \(A \times B \) has \(n \cdot m \) elements.

Proof. For every element \(x \) in \(A \), there are \(m \) elements of the form \(\langle x, y \rangle \in A \times B \). Let \(B_x = \{ \langle x, y \rangle : y \in B \} \). Since whenever \(x_1 \neq x_2 \), \(\langle x_1, y \rangle \neq \langle x_2, y \rangle \), \(B_{x_1} \cap B_{x_2} = \emptyset \). But if \(A = \{x_1, \ldots, x_n\} \), then \(A \times B = B_{x_1} \cup \cdots \cup B_{x_n} \), and so has \(n \cdot m \) elements.
To visualize this, arrange the elements of $A \times B$ in a grid:

$$
B_{x_1} = \{ \langle x_1, y_1 \rangle, \langle x_1, y_2 \rangle, \ldots, \langle x_1, y_m \rangle \}
$$

$$
B_{x_2} = \{ \langle x_2, y_1 \rangle, \langle x_2, y_2 \rangle, \ldots, \langle x_2, y_m \rangle \}
$$

$$
\vdots
$$

$$
B_{x_n} = \{ \langle x_n, y_1 \rangle, \langle x_n, y_2 \rangle, \ldots, \langle x_n, y_m \rangle \}
$$

Since the x_i are all different, and the y_j are all different, no two of the pairs in this grid are the same, and there are $n \cdot m$ of them.

Problem set.10. Show, by induction on k, that for all $k \geq 1$, if A has n elements, then A^k has n^k elements.

Example set.28. If A is a set, a word over A is any sequence of elements of A. A sequence can be thought of as an n-tuple of elements of A. For instance, if $A = \{a, b, c\}$, then the sequence "bac" can be thought of as the triple $\langle b, a, c \rangle$. Words, i.e., sequences of symbols, are of crucial importance in computer science. By convention, we count elements of A as sequences of length 1, and \emptyset as the sequence of length 0. The set of all words over A then is

$$
A^* = \{\emptyset\} \cup A \cup A^2 \cup A^3 \cup \ldots
$$

set.6 Russell’s Paradox

Extensionality licenses the notation $\{ x : \varphi(x) \}$, for the set of x’s such that $\varphi(x)$. However, all that extensionality really licenses is the following thought. If there is a set whose members are all and only the φ’s, then there is only one such set. Otherwise put: having fixed some φ, the set $\{ x : \varphi(x) \}$ is unique, if it exists. But this conditional is important! Crucially, not every property lends itself to comprehension. That is, some properties do not define sets. If they all did, then we would run into outright contradictions. The most famous example of this is Russell’s Paradox.

Sets may be elements of other sets—for instance, the power set of a set A is made up of sets. And so it makes sense to ask or investigate whether a set is an element of another set. Can a set be a member of itself? Nothing about the idea of a set seems to rule this out. For instance, if all sets form a collection of objects, one might think that they can be collected into a single set—the set of all sets. And it, being a set, would be an element of the set of all sets.

Russell’s Paradox arises when we consider the property of not having itself as an element, of being non-self-membered. What if we suppose that there is a set of all sets that do not have themselves as an element? Does

$$
R = \{ x : x \notin x \}
$$

exist? It turns out that we can prove that it does not.

Theorem set.29 (Russell’s Paradox). There is no set $R = \{ x : x \notin x \}$.

sets rev: d4e99d0 (2023-10-08) by OLP / CC–BY
Proof. If $R = \{x : x \notin x\}$ exists, then $R \in R$ iff $R \notin R$, which is a contradiction.

Explanation

Let’s run through this proof more slowly. If R exists, it makes sense to ask whether $R \in R$ or not. Suppose that indeed $R \in R$. Now, R was defined as the set of all sets that are not elements of themselves. So, if $R \in R$, then R does not itself have R’s defining property. But only sets that have this property are in R, hence, R cannot be an element of R, i.e., $R \notin R$. But R can’t both be and not be an element of R, so we have a contradiction.

Since the assumption that $R \in R$ leads to a contradiction, we have $R \notin R$. But this also leads to a contradiction! For if $R \notin R$, then R itself does have R’s defining property, and so R would be an element of R just like all the other non-self-membered sets. And again, it can’t both not be and be an element of R.

Digression

How do we set up a set theory which avoids falling into Russell’s Paradox, i.e., which avoids making the *inconsistent* claim that $R = \{x : x \notin x\}$ exists? Well, we would need to lay down axioms which give us very precise conditions for stating when sets exist (and when they don’t).

The set theory sketched in this chapter doesn’t do this. It’s *genuinely naïve*. It tells you only that sets obey extensionality and that, if you have some sets, you can form their union, intersection, etc. It is possible to develop set theory more rigorously than this.

Photo Credits
Bibliography