
Part I

Sets, Relations, Functions
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The material in this part is a reasonably complete introduction to basic
naive set theory. Unless students can be assumed to have this background,
it’s probably advisable to start a course with a review of this material, at
least the part on sets, functions, and relations. This should ensure that all
students have the basic facility with mathematical notation required for
any of the other logical sections. NB: This part does not cover induction
directly.

The presentation here would benefit from additional examples, espe-
cially, “real life” examples of relations of interest to the audience.

It is planned to expand this part to cover naive set theory more exten-
sively.
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Chapter 1

Sets

1.1 Basics

sfr:set:bas:
sec

explanationSets are the most fundamental building blocks of mathematical objects. In
fact, almost every mathematical object can be seen as a set of some kind. In
logic, as in other parts of mathematics, sets and set-theoretical talk is ubiq-
uitous. So it will be important to discuss what sets are, and introduce the
notations necessary to talk about sets and operations on sets in a standard
way.

Definition 1.1 (Set). A set is a collection of objects, considered independently
of the way it is specified, of the order of the objects in the set, or of their
multiplicity. The objects making up the set are called elements or members of
the set. If a is an element of a set X, we write a ∈ X (otherwise, a /∈ X). The
set which has no elements is called the empty set and denoted by the symbol ∅.

Example 1.2. Whenever you have a bunch of objects, you can collect them
together in a set. The set of Richard’s siblings, for instance, is a set that
contains one person, and we could write it as S = {Ruth}. In general, when
we have some objects a1, . . . , an, then the set consisting of exactly those
objects is written {a1, . . . , an}. Frequently we’ll specify a set by some property
that its elements share—as we just did, for instance, by specifying S as the
set of Richard’s siblings. We’ll use the following shorthand notation for that:
{x : . . . x . . .}, where the . . . x . . . stands for the property that x has to have in
order to be counted among the elements of the set. In our example, we could
have specified S also as

S = {x : x is a sibling of Richard}.

explanationWhen we say that sets are independent of the way they are specified, we
mean that the elements of a set are all that matters. For instance, it so happens
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that

{Nicole, Jacob},
{x : is a niece or nephew of Richard}, and

{x : is a child of Ruth}

are three ways of specifying one and the same set.
Saying that sets are considered independently of the order of their elements

and their multiplicity is a fancy way of saying that

{Nicole, Jacob} and

{Jacob,Nicole}

are two ways of specifying the same set; and that

{Nicole, Jacob} and

{Jacob,Nicole,Nicole}

are also two ways of specifying the same set. In other words, all that matters
is which elements a set has. The elements of a set are not ordered and each
element occurs only once. When we specify or describe a set, elements may
occur multiple times and in different orders, but any descriptions that only
differ in the order of elements or in how many times elements are listed describes
the same set.

Definition 1.3 (Extensionality). If X and Y are sets, then X and Y are
identical, X = Y , iff every element of X is also an element of Y , and vice
versa.

explanation Extensionality gives us a way for showing that sets are identical: to show
that X = Y , show that whenever x ∈ X then also x ∈ Y , and whenever y ∈ Y
then also y ∈ X.

Problem 1.1. Show that there is only one empty set, i.e., show that if X and
Y are sets without members, then X = Y .

1.2 Some Important Sets

sfr:set:set:
sec

Example 1.4. Mostly we’ll be dealing with sets that have mathematical ob-
jects as members. You will remember the various sets of numbers: N is the set
of natural numbers {0, 1, 2, 3, . . . }; Z the set of integers,

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . };

Q the set of rational numbers (Q = {z/n : z ∈ Z, n ∈ N, n 6= 0}); and R
the set of real numbers. These are all infinite sets, that is, they each have
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infinitely many elements. As it turns out, N, Z, Q have the same number
of elements, while R has a whole bunch more—N, Z, Q are “enumerable and
infinite” whereas R is “non-enumerable”.

We’ll sometimes also use the set of positive integers Z+ = {1, 2, 3, . . . } and
the set containing just the first two natural numbers B = {0, 1}.

Example 1.5 (Strings). Another interesting example is the set A∗ of finite
strings over an alphabet A: any finite sequence of elements of A is a string
over A. We include the empty string Λ among the strings over A, for every
alphabet A. For instance,

B∗ = {Λ, 0, 1, 00, 01, 10, 11,

000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .}.

If x = x1 . . . xn ∈ A∗is a string consisting of n “letters” from A, then we say
length of the string is n and write len(x) = n.

Example 1.6 (Infinite sequences). For any set A we may also consider the
set Aω of infinite sequences of elements of A. An infinite sequence a1a2a3a4 . . .
consists of a one-way infinite list of objects, each one of which is an element
of A.

1.3 Subsets

sfr:set:sub:
sec

explanationSets are made up of their elements, and every element of a set is a part
of that set. But there is also a sense that some of the elements of a set taken
together are a “part of” that set. For instance, the number 2 is part of the set
of integers, but the set of even numbers is also a part of the set of integers. It’s
important to keep those two senses of being part of a set separate.

Definition 1.7 (Subset). If every element of a set X is also an element of Y ,
then we say that X is a subset of Y , and write X ⊆ Y .

Example 1.8. First of all, every set is a subset of itself, and ∅ is a subset of
every set. The set of even numbers is a subset of the set of natural numbers.
Also, {a, b} ⊆ {a, b, c}.

But {a, b, e} is not a subset of {a, b, c}.

explanationNote that a set may contain other sets, not just as subsets but as elements!
In particular, a set may happen to both be an element and a subset of another,
e.g., {0} ∈ {0, {0}} and also {0} ⊆ {0, {0}}.

explanationExtensionality gives a criterion of identity for sets: X = Y iff every element
of X is also an element of Y and vice versa. The definition of “subset” defines
X ⊆ Y precisely as the first half of this criterion: every element of X is also
an element of Y . Of course the definition also applies if we switch X and Y :
Y ⊆ X iff every element of Y is also an element of X. And that, in turn, is
exactly the “vice versa” part of extensionality. In other words, extensionality
amounts to: X = Y iff X ⊆ Y and Y ⊆ X.
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Figure 1.1: The union X ∪ Y of two sets is set of elements of X together with
those of Y .

Definition 1.9 (Power Set). The set consisting of all subsets of a set X is
called the power set of X, written ℘(X).

℘(X) = {Y : Y ⊆ X}

Example 1.10. What are all the possible subsets of {a, b, c}? They are: ∅,
{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. The set of all these subsets is
℘({a, b, c}):

℘({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

Problem 1.2. List all subsets of {a, b, c, d}.

Problem 1.3. Show that if X has n elements, then ℘(X) has 2n elements.

1.4 Unions and Intersections

sfr:set:uni:
sec

explanation We can define new sets by abstraction, and the property used to define the
new set can mention sets we’ve already defined. So for instance, if X and Y
are sets, the set {x : x ∈ X ∨ x ∈ Y } defines a set which consists of all those
objects which are elements of either X or Y , i.e., it’s the set that combines the
elements of X and Y . This operation on sets—combining them—is very useful
and common, and so we give it a name and a symbol.

Definition 1.11 (Union). The union of two sets X and Y , written X ∪ Y , is
the set of all things which are elements of X, Y , or both.

X ∪ Y = {x : x ∈ X ∨ x ∈ Y }
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Figure 1.2: The intersection X ∩ Y of two sets is the set of elements they have
in common.

Example 1.12. Since the multiplicity of elements doesn’t matter, the union
of two sets which have an element in common contains that element only once,
e.g., {a, b, c} ∪ {a, 0, 1} = {a, b, c, 0, 1}.

The union of a set and one of its subsets is just the bigger set: {a, b, c} ∪
{a} = {a, b, c}.

The union of a set with the empty set is identical to the set: {a, b, c} ∪ ∅ =
{a, b, c}.

Problem 1.4. Prove rigorously that if X ⊆ Y , then X ∪ Y = Y .

explanationThe operation that forms the set of all elements that X and Y have in
common is called their intersection.

Definition 1.13 (Intersection). The intersection of two sets X and Y , written
X ∩ Y , is the set of all things which are elements of both X and Y .

X ∩ Y = {x : x ∈ X ∧ x ∈ Y }

Two sets are called disjoint if their intersection is empty. This means they
have no elements in common.

Example 1.14. If two sets have no elements in common, their intersection is
empty: {a, b, c} ∩ {0, 1} = ∅.

If two sets do have elements in common, their intersection is the set of all
those: {a, b, c} ∩ {a, b, d} = {a, b}.

The intersection of a set with one of its subsets is just the smaller set:
{a, b, c} ∩ {a, b} = {a, b}.

The intersection of any set with the empty set is empty: {a, b, c} ∩ ∅ = ∅.

Problem 1.5. Prove rigorously that if X ⊆ Y , then X ∩ Y = X.
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explanation We can also form the union or intersection of more than two sets. An
elegant way of dealing with this in general is the following: suppose you collect
all the sets you want to form the union (or intersection) of into a single set.
Then we can define the union of all our original sets as the set of all objects
which belong to at least one element of the set, and the intersection as the set
of all objects which belong to every element of the set.

Definition 1.15. If Z is a set of sets, then
⋃
Z is the set of elements of

elements of Z: ⋃
Z = {x : x belongs to an element of Z}, i.e.,⋃
Z = {x : there is a Y ∈ Z so that x ∈ Y }

Definition 1.16. If Z is a set of sets, then
⋂
Z is the set of objects which all

elements of Z have in common:⋂
Z = {x : x belongs to every element of Z}, i.e.,⋂
Z = {x : for all Y ∈ Z, x ∈ Y }

Example 1.17. Suppose Z = {{a, b}, {a, d, e}, {a, d}}. Then
⋃
Z = {a, b, d, e}

and
⋂
Z = {a}.

We could also do the same for a sequence of sets X1, X2, . . .⋃
i

Xi = {x : x belongs to one of the Xi}⋂
i

Xi = {x : x belongs to every Xi}.

Definition 1.18 (Difference). The difference X \ Y is the set of all elements
of X which are not also elements of Y , i.e.,

X \ Y = {x : x ∈ X and x /∈ Y }.

1.5 Pairs, Tuples, Cartesian Products

sfr:set:pai:
sec

explanation Sets have no order to their elements. We just think of them as an unordered
collection. So if we want to represent order, we use ordered pairs 〈x, y〉. In
an unordered pair {x, y}, the order does not matter: {x, y} = {y, x}. In an
ordered pair, it does: if x 6= y, then 〈x, y〉 6= 〈y, x〉.

Sometimes we also want ordered sequences of more than two objects, e.g.,
triples 〈x, y, z〉, quadruples 〈x, y, z, u〉, and so on. In fact, we can think of
triples as special ordered pairs, where the first element is itself an ordered pair:
〈x, y, z〉 is short for 〈〈x, y〉, z〉. The same is true for quadruples: 〈x, y, z, u〉
is short for 〈〈〈x, y〉, z〉, u〉, and so on. In general, we talk of ordered n-tuples
〈x1, . . . , xn〉.
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Figure 1.3: The difference X \ Y of two sets is the set of those elements of X
which are not also elements of Y .

Definition 1.19 (Cartesian product). Given sets X and Y , their Cartesian
product X × Y is {〈x, y〉 : x ∈ X and y ∈ Y }.

Example 1.20. If X = {0, 1}, and Y = {1, a, b}, then their product is

X × Y = {〈0, 1〉, 〈0, a〉, 〈0, b〉, 〈1, 1〉, 〈1, a〉, 〈1, b〉}.

Example 1.21. If X is a set, the product of X with itself, X × X, is also
written X2. It is the set of all pairs 〈x, y〉 with x, y ∈ X. The set of all triples
〈x, y, z〉 is X3, and so on. We can give an inductive definition:

X1 = X

Xk+1 = Xk ×X

Problem 1.6. List all elements of {1, 2, 3}3.

Proposition 1.22. If X has n elements and Y has m elements, then X × Y
has n ·m elements.

Proof. For every element x in X, there are m elements of the form 〈x, y〉 ∈
X × Y . Let Yx = {〈x, y〉 : y ∈ Y }. Since whenever x1 6= x2, 〈x1, y〉 6= 〈x2, y〉,
Yx1
∩ Yx2

= ∅. But if X = {x1, . . . , xn}, then X × Y = Yx1
∪ · · · ∪ Yxn

, and so
has n ·m elements.

To visualize this, arrange the elements of X × Y in a grid:

Yx1 = {〈x1, y1〉 〈x1, y2〉 . . . 〈x1, ym〉}
Yx2 = {〈x2, y1〉 〈x2, y2〉 . . . 〈x2, ym〉}

...
...

Yxn = {〈xn, y1〉 〈xn, y2〉 . . . 〈xn, ym〉}

Since the xi are all different, and the yj are all different, no two of the pairs in
this grid are the same, and there are n ·m of them.
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Problem 1.7. Show, by induction on k, that for all k ≥ 1, if X has n elements,
then Xk has nk elements.

Example 1.23. If X is a set, a word over X is any sequence of elements of X.
A sequence can be thought of as an n-tuple of elements of X. For instance, if
X = {a, b, c}, then the sequence “bac” can be thought of as the triple 〈b, a, c〉.
Words, i.e., sequences of symbols, are of crucial importance in computer science,
of course. By convention, we count elements of X as sequences of length 1,
and ∅ as the sequence of length 0. The set of all words over X then is

X∗ = {∅} ∪X ∪X2 ∪X3 ∪ . . .

1.6 Russell’s Paradox

sfr:set:rus:
sec

We said that one can define sets by specifying a property that its elements
share, e.g., defining the set of Richard’s siblings as

S = {x : x is a sibling of Richard}.

In the very general context of mathematics one must be careful, however: not
every property lends itself to comprehension. Some properties do not define
sets. If they did, we would run into outright contradictions. One example of
such a case is Russell’s Paradox.

Sets may be elements of other sets—for instance, the power set of a set X
is made up of sets. And so it makes sense, of course, to ask or investigate
whether a set is an element of another set. Can a set be a member of itself?
Nothing about the idea of a set seems to rule this out. For instance, surely all
sets form a collection of objects, so we should be able to collect them into a
single set—the set of all sets. And it, being a set, would be an element of the
set of all sets.

Russell’s Paradox arises when we consider the property of not having itself
as an element. The set of all sets does not have this property, but all sets
we have encountered so far have it. N is not an element of N, since it is a
set, not a natural number. ℘(X) is generally not an element of ℘(X); e.g.,
℘(R) /∈ ℘(R) since it is a set of sets of real numbers, not a set of real numbers.
What if we suppose that there is a set of all sets that do not have themselves
as an element? Does

R = {x : x /∈ x}

exist?
If R exists, it makes sense to ask if R ∈ R or not—it must be either ∈ R or

/∈ R. Suppose the former is true, i.e., R ∈ R. R was defined as the set of all
sets that are not elements of themselves, and so if R ∈ R, then R does not have
this defining property of R. But only sets that have this property are in R,
hence, R cannot be an element of R, i.e., R /∈ R. But R can’t both be and not
be an element of R, so we have a contradiction.
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Since the assumption that R ∈ R leads to a contradiction, we have R /∈ R.
But this also leads to a contradiction! For if R /∈ R, it does have the defining
property of R, and so would be an element of R just like all the other non-self-
containing sets. And again, it can’t both not be and be an element of R.
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Chapter 2

Relations

2.1 Relations as Sets

sfr:rel:set:
sec

explanation You will no doubt remember some interesting relations between objects of
some of the sets we’ve mentioned. For instance, numbers come with an order
relation < and from the theory of whole numbers the relation of divisibility
without remainder (usually written n | m) may be familar. There is also the
relation is identical with that every object bears to itself and to no other thing.
But there are many more interesting relations that we’ll encounter, and even
more possible relations. Before we review them, we’ll just point out that we can
look at relations as a special sort of set. For this, first recall what a pair is: if a
and b are two objects, we can combine them into the ordered pair 〈a, b〉. Note
that for ordered pairs the order does matter, e.g, 〈a, b〉 6= 〈b, a〉, in contrast to
unordered pairs, i.e., 2-element sets, where {a, b} = {b, a}.

If X and Y are sets, then the Cartesian product X × Y of X and Y is the
set of all pairs 〈a, b〉 with a ∈ X and b ∈ Y . In particular, X2 = X ×X is the
set of all pairs from X.

Now consider a relation on a set, e.g., the <-relation on the set N of natural
numbers, and consider the set of all pairs of numbers 〈n,m〉 where n < m, i.e.,

R = {〈n,m〉 : n,m ∈ N and n < m}.

Then there is a close connection between the number n being less than a number
m and the corresponding pair 〈n,m〉 being a member of R, namely, n < m if
and only if 〈n,m〉 ∈ R. In a sense we can consider the set R to be the <-relation
on the set N. In the same way we can construct a subset of N2 for any relation
between numbers. Conversely, given any set of pairs of numbers S ⊆ N2, there
is a corresponding relation between numbers, namely, the relationship n bears
to m if and only if 〈n,m〉 ∈ S. This justifies the following definition:

Definition 2.1 (Binary relation). A binary relation on a set X is a subset
of X2. If R ⊆ X2 is a binary relation on X and x, y ∈ X, we write Rxy (or
xRy) for 〈x, y〉 ∈ R.
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Example 2.2.sfr:rel:set:

relations

The set N2 of pairs of natural numbers can be listed in a
2-dimensional matrix like this:

〈0,0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 . . .
〈1, 0〉 〈1,1〉 〈1, 2〉 〈1, 3〉 . . .
〈2, 0〉 〈2, 1〉 〈2,2〉 〈2, 3〉 . . .
〈3, 0〉 〈3, 1〉 〈3, 2〉 〈3,3〉 . . .
...

...
...

...
. . .

The subset consisting of the pairs lying on the diagonal, i.e.,

{〈0, 0〉, 〈1, 1〉, 〈2, 2〉, . . . },

is the identity relation on N. (Since the identity relation is popular, let’s define
IdX = {〈x, x〉 : x ∈ X} for any set X.) The subset of all pairs lying above the
diagonal, i.e.,

L = {〈0, 1〉, 〈0, 2〉, . . . , 〈1, 2〉, 〈1, 3〉, . . . , 〈2, 3〉, 〈2, 4〉, . . .},

is the less than relation, i.e., Lnm iff n < m. The subset of pairs below the
diagonal, i.e.,

G = {〈1, 0〉, 〈2, 0〉, 〈2, 1〉, 〈3, 0〉, 〈3, 1〉, 〈3, 2〉, . . . },

is the greater than relation, i.e., Gnm iff n > m. The union of L with I,
K = L ∪ I, is the less than or equal to relation: Knm iff n ≤ m. Similarly,
H = G∪ I is the greater than or equal to relation. L, G, K, and H are special
kinds of relations called orders. L and G have the property that no number
bears L or G to itself (i.e., for all n, neither Lnn nor Gnn). Relations with
this property are called irreflexive, and, if they also happen to be orders, they
are called strict orders.

explanationAlthough orders and identity are important and natural relations, it should
be emphasized that according to our definition any subset of X2 is a relation
on X, regardless of how unnatural or contrived it seems. In particular, ∅ is a
relation on any set (the empty relation, which no pair of elements bears), and
X2 itself is a relation on X as well (one which every pair bears), called the
universal relation. But also something like E = {〈n,m〉 : n > 5 or m×n ≥ 34}
counts as a relation.

Problem 2.1. List the elements of the relation ⊆ on the set ℘({a, b, c}).

2.2 Special Properties of Relations

sfr:rel:prp:
sec

introSome kinds of relations turn out to be so common that they have been given
special names. For instance, ≤ and ⊆ both relate their respective domains
(say, N in the case of ≤ and ℘(X) in the case of ⊆) in similar ways. To get at
exactly how these relations are similar, and how they differ, we categorize them
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according to some special properties that relations can have. It turns out that
(combinations of) some of these special properties are especially important:
orders and equivalence relations.

Definition 2.3 (Reflexivity). A relation R ⊆ X2 is reflexive iff, for every
x ∈ X, Rxx.

Definition 2.4 (Transitivity). A relation R ⊆ X2 is transitive iff, whenever
Rxy and Ryz, then also Rxz.

Definition 2.5 (Symmetry). A relation R ⊆ X2 is symmetric iff, whenever
Rxy, then also Ryx.

Definition 2.6 (Anti-symmetry). A relation R ⊆ X2 is anti-symmetric iff,
whenever both Rxy and Ryx, then x = y (or, in other words: if x 6= y then
either ¬Rxy or ¬Ryx).

explanation In a symmetric relation, Rxy and Ryx always hold together, or neither
holds. In an anti-symmetric relation, the only way for Rxy and Ryx to hold
together is if x = y. Note that this does not require that Rxy and Ryx
holds when x = y, only that it isn’t ruled out. So an anti-symmetric relation
can be reflexive, but it is not the case that every anti-symmetric relation is
reflexive. Also note that being anti-symmetric and merely not being symmetric
are different conditions. In fact, a relation can be both symmetric and anti-
symmetric at the same time (e.g., the identity relation is).

Definition 2.7 (Connectivity). A relation R ⊆ X2 is connected if for all
x, y ∈ X, if x 6= y, then either Rxy or Ryx.

Definition 2.8 (Partial order). A relation R ⊆ X2 that is reflexive, transitive,
and anti-symmetric is called a partial order.

Definition 2.9 (Linear order). A partial order that is also connected is called
a linear order.

Definition 2.10 (Equivalence relation). A relation R ⊆ X2 that is reflexive,
symmetric, and transitive is called an equivalence relation.

Problem 2.2. Give examples of relations that are (a) reflexive and symmetric
but not transitive, (b) reflexive and anti-symmetric, (c) anti-symmetric, tran-
sitive, but not reflexive, and (d) reflexive, symmetric, and transitive. Do not
use relations on numbers or sets.

2.3 Orders

sfr:rel:ord:
sec

explanation Very often we are interested in comparisons between objects, where one
object may be less or equal or greater than another in a certain respect. Size is
the most obvious example of such a comparative relation, or order. But not all
such relations are alike in all their properties. For instance, some comparative
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relations require any two objects to be comparable, others don’t. (If they do,
we call them linear or total.) Some include identity (like ≤) and some exclude
it (like <). Let’s get some order into all this.

Definition 2.11 (Preorder). A relation which is both reflexive and transitive
is called a preorder.

Definition 2.12 (Partial order). A preorder which is also anti-symmetric is
called a partial order.

Definition 2.13 (Linear order). A partial order which is also connected is
called a total order or linear order.

Example 2.14. Every linear order is also a partial order, and every partial
order is also a preorder, but the converses don’t hold. The universal relation
on X is a preorder, since it is reflexive and transitive. But, if X has more than
one element, the universal relation is not anti-symmetric, and so not a partial
order. For a somewhat less silly example, consider the no longer than relation
4 on B∗: x 4 y iff len(x) ≤ len(y). This is a preorder (reflexive and transitive),
and even connected, but not a partial order, since it is not anti-symmetric. For
instance, 01 4 10 and 10 4 01, but 01 6= 10.

The relation of divisibility without remainder gives us an example of a par-
tial order which isn’t a linear order: for integers n, m, we say n (evenly) divides
m, in symbols: n | m, if there is some k so that m = kn. On N, this is a partial
order, but not a linear order: for instance, 2 - 3 and also 3 - 2. Considered as
a relation on Z, divisibility is only a preorder since anti-symmetry fails: 1 | −1
and −1 | 1 but 1 6= −1. Another important partial order is the relation ⊆ on
a set of sets.

Notice that the examples L and G from Example 2.2, although we said
there that they were called “strict orders,” are not linear orders even though
they are connected (they are not reflexive). But there is a close connection, as
we will see momentarily.

Definition 2.15 (Irreflexivity). A relation R on X is called irreflexive if, for
all x ∈ X, ¬Rxx.

Definition 2.16 (Asymmetry). A relation R on X is called asymmetric if for
no pair x, y ∈ X we have Rxy and Ryx.

Definition 2.17 (Strict order). A strict order is a relation which is irreflexive,
asymmetric, and transitive.

Definition 2.18 (Strict linear order). A strict order which is also connected
is called a strict linear order.

A strict order on X can be turned into a partial order by adding the diag-
onal IdX , i.e., adding all the pairs 〈x, x〉. (This is called the reflexive closure
of R.) Conversely, starting from a partial order, one can get a strict order by
removing IdX .
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Proposition 2.19. sfr:rel:ord:

strict-partial

1. If R is a strict (linear) order on X, then R+ = R∪ IdX is a partial order
(linear order).

2. If R is a partial order (linear order) on X, then R− = R \ IdX is a strict
(linear) order.

Proof. 1. Suppose R is a strict order, i.e., R ⊆ X2 and R is irreflexive,
asymmetric, and transitive. Let R+ = R ∪ IdX . We have to show that
R+ is reflexive, antisymmetric, and transitive.

R+ is clearly reflexive, since for all x ∈ X, 〈x, x〉 ∈ IdX ⊆ R+.

To show R+ is antisymmetric, suppose R+xy and R+yx, i.e., 〈x, y〉 and
〈y, x〉 ∈ R+, and x 6= y. Since 〈x, y〉 ∈ R ∪ IdX , but 〈x, y〉 /∈ IdX , we
must have 〈x, y〉 ∈ R, i.e., Rxy. Similarly we get that Ryx. But this
contradicts the assumption that R is asymmetric.

Now suppose that R+xy and R+yz. If both 〈x, y〉 ∈ R and 〈y, z〉 ∈ R,
it follows that 〈x, z〉 ∈ R since R is transitive. Otherwise, either 〈x, y〉 ∈
IdX , i.e., x = y, or 〈y, z〉 ∈ IdX , i.e., y = z. In the first case, we have
that R+yz by assumption, x = y, hence R+xz. Similarly in the second
case. In either case, R+xz, thus, R+ is also transitive.

If R is connected, then for all x 6= y, either Rxy or Ryx, i.e., either
〈x, y〉 ∈ R or 〈y, x〉 ∈ R. Since R ⊆ R+, this remains true of R+, so R+

is connected as well.

2. Exercise.

Problem 2.3. Complete the proof of Proposition 2.19, i.e., prove that if R is
a partial order on X, then R− = R \ IdX is a strict order.

Example 2.20. ≤ is the linear order corresponding to the strict linear order <.
⊆ is the partial order corresponding to the strict order (.

2.4 Graphs

sfr:rel:grp:
sec

A graph is a diagram in which points—called “nodes” or “vertices” (plural
of “vertex”)—are connected by edges. Graphs are a ubiquitous tool in discrete
mathematics and in computer science. They are incredibly useful for repre-
senting, and visualizing, relationships and structures, from concrete things like
networks of various kinds to abstract structures such as the possible outcomes
of decisions. There are many different kinds of graphs in the literature which
differ, e.g., according to whether the edges are directed or not, have labels or
not, whether there can be edges from a node to the same node, multiple edges
between the same nodes, etc. Directed graphs have a special connection to
relations.
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Definition 2.21 (Directed graph). A directed graph G = 〈V,E〉 is a set of
vertices V and a set of edges E ⊆ V 2.

explanationAccording to our definition, a graph just is a set together with a relation
on that set. Of course, when talking about graphs, it’s only natural to expect
that they are graphically represented: we can draw a graph by connecting two
vertices v1 and v2 by an arrow iff 〈v1, v2〉 ∈ E. The only difference between a
relation by itself and a graph is that a graph specifies the set of vertices, i.e., a
graph may have isolated vertices. The important point, however, is that every
relation R on a set X can be seen as a directed graph 〈X,R〉, and conversely, a
directed graph 〈V,E〉 can be seen as a relation E ⊆ V 2 with the set V explicitly
specified.

Example 2.22. The graph 〈V,E〉 with V = {1, 2, 3, 4} and E = {〈1, 1〉, 〈1, 2〉,
〈1, 3〉, 〈2, 3〉} looks like this:

1 2

3

4

This is a different graph than 〈V ′, E〉 with V ′ = {1, 2, 3}, which looks like this:

1 2

3

Problem 2.4. Consider the less-than-or-equal-to relation≤ on the set {1, 2, 3, 4}
as a graph and draw the corresponding diagram.

2.5 Operations on Relations

sfr:rel:ops:
sec

It is often useful to modify or combine relations. We’ve already used the
union of relations above (which is just the union of two relations considered as
sets of pairs). Here are some other ways:

Definition 2.23. Let R, S ⊆ X2 be relations and Y a set.

1. The inverse R−1 of R is R−1 = {〈y, x〉 : 〈x, y〉 ∈ R}.
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2. The relative product R | S of R and S is

(R | S) = {〈x, z〉 : for some y,Rxy and Syz}

3. The restriction R � Y of R to Y is R ∩ Y 2

4. The application R[Y ] of R to Y is

R[Y ] = {y : for some x ∈ Y,Rxy}

Example 2.24. Let S ⊆ Z2 be the successor relation on Z, i.e., the set of
pairs 〈x, y〉 where x+ 1 = y, for x, y ∈ Z. Sxy holds iff y is the successor of x.

1. The inverse S−1 of S is the predecessor relation, i.e., S−1xy iff x−1 = y.

2. The relative product S | S is the relation x bears to y if x+ 2 = y.

3. The restriction of S to N is the successor relation on N.

4. The application of S to a set, e.g., S[{1, 2, 3}] is {2, 3, 4}.

Definition 2.25 (Transitive closure). The transitive closure R+ of a relation
R ⊆ X2 is R+ =

⋃∞
i=1R

i where R1 = R and Ri+1 = Ri | R.
The reflexive transitive closure of R is R∗ = R+ ∪ IdX .

Example 2.26. Take the successor relation S ⊆ Z2. S2xy iff x+ 2 = y, S3xy
iff x+ 3 = y, etc. So R∗xy iff for some i ≥ 1, x+ i = y. In other words, S+xy
iff x < y (and R∗xy iff x ≤ y).

Problem 2.5. Show that the transitive closure of R is in fact transitive.
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Chapter 3

Functions

3.1 Basics

sfr:fun:bas:
sec

explanationA function is a mapping which pairs each object of a given set with a
single partner in another set. For instance, the operation of adding 1 defines a
function: each number n is paired with a unique number n+1. More generally,
functions may take pairs, triples, etc., of inputs and returns some kind of
output. Many functions are familiar to us from basic arithmetic. For instance,
addition and multiplication are functions. They take in two numbers and return
a third. In this mathematical, abstract sense, a function is a black box : what
matters is only what output is paired with what input, not the method for
calculating the output.

Definition 3.1 (Function). A function f : X → Y is a mapping of each ele-
ment of X to an element of Y . We call X the domain of f and Y the codomain
of f . The elements of X are called inputs or arguments of f , and the ele-
ment of Y that is paired with an argument x by f is called the value of f for
argument x, written f(x).

The range ran(f) of f is the subset of the codomain consisting of the values
of f for some argument; ran(f) = {f(x) : x ∈ X}.

Example 3.2. Multiplication takes pairs of natural numbers as inputs and
maps them to natural numbers as outputs, so goes from N × N (the domain)
to N (the codomain). As it turns out, the range is also N, since every n ∈ N is
n× 1.

explanationMultiplication is a function because it pairs each input—each pair of natural
numbers—with a single output: × : N2 → N. By contrast, the square root
operation applied to the domain N is not functional, since each positive integer
n has two square roots:

√
n and −

√
n. We can make it functional by only

returning the positive square root:
√

: N→ R. The relation that pairs each
student in a class with their final grade is a function—no student can get two
different final grades in the same class. The relation that pairs each student in
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Figure 3.1: A function is a mapping of each element of one set to an element of
another. An arrow points from an argument in the domain to the corresponding
value in the codomain.

a class with their parents is not a function—generally each student will have
at least two parents.

We can define functions by specifying in some precise way what the value
of the function is for every possible argment. Different ways of doing this are
by giving a formula, describing a method for computing the value, or listing
the values for each argument. However functions are defined, we must make
sure that for each argment we specify one, and only one, value.

Example 3.3. Let f : N → N be defined such that f(x) = x + 1. This is a
definition that specifies f as a function which takes in natural numbers and
outputs natural numbers. It tells us that, given a natural number x, f will
output its successor x+ 1. In this case, the codomain N is not the range of f ,
since the natural number 0 is not the successor of any natural number. The
range of f is the set of all positive integers, Z+.

Example 3.4. Let g : N→ N be defined such that g(x) = x+ 2− 1. This tells
us that g is a function which takes in natural numbers and outputs natural
numbers. Given a natural number n, g will output the predecessor of the
successor of the successor of x, i.e., x+ 1. Despite their different definitions, g
and f are the same function.

explanation Functions f and g defined above are the same because for any natural
number x, x+ 2− 1 = x+ 1. f and g pair each natural number with the same
output. The definitions for f and g specify the same mapping by means of
different equations, and so count as the same function.

Example 3.5. We can also define functions by cases. For instance, we could
define h : N→ N by

h(x) =

{
x
2 if x is even
x+1
2 if x is odd.

Since every natural number is either even or odd, the output of this function
will always be a natural number. Just remember that if you define a function
by cases, every possible input must fall into exactly one case. In some cases,
this will require a a proof that the cases are exhaustive and exclusive.
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Figure 3.2: A surjective function has every element of the codomain as a value.

Figure 3.3: An injective function never maps two different arguments to the
same value.

3.2 Kinds of Functions

sfr:fun:kin:
sec

Definition 3.6 (Surjective function). A function f : X → Y is surjective iff
Y is also the range of f , i.e., for every y ∈ Y there is at least one x ∈ X such
that f(x) = y.

explanationIf you want to show that a function is surjective, then you need to show
that every object in the codomain is the output of the function given some
input or other.

Definition 3.7 (Injective function). A function f : X → Y is injective iff for
each y ∈ Y there is at most one x ∈ X such that f(x) = y.

explanationAny function pairs each possible input with a unique output. An injective
function has a unique input for each possible output. If you want to show that
a function f is injective, you need to show that for any elements x and x′ of
the domain, if f(x) = f(x′), then x = x′.

An example of a function which is neither injective, nor surjective, is the
constant function f : N→ N where f(x) = 1.

An example of a function which is both injective and surjective is the iden-
tity function f : N→ N where f(x) = x.
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Figure 3.4: A bijective function uniquely pairs the elements of the codomain
with those of the domain.

The successor function f : N → N where f(x) = x + 1 is injective, but not
surjective.

The function

f(x) =

{
x
2 if x is even
x+1
2 if x is odd.

is surjective, but not injective.

Definition 3.8 (Bijection). A function f : X → Y is bijective iff it is both
surjective and injective. We call such a function a bijection from X to Y (or
between X and Y ).

3.3 Inverses of Functions

sfr:fun:inv:
sec

explanation One obvious question about functions is whether a given mapping can be
“reversed.” For instance, the successor function f(x) = x + 1 can be reversed
in the sense that the function g(y) = y − 1 “undoes” what f does. But we
must be careful: While the definition of g defines a function Z → Z, it does
not define a function N→ N (g(0) /∈ N). So even in simple cases, it is not quite
obvious if functions can be reversed, and that it may depend on the domain
and codomain. Let’s give a precise definition.

Definition 3.9. A function g : Y → X is an inverse of a function f : X → Y
if f(g(y)) = y and g(f(x)) = x for all x ∈ X and y ∈ Y .

explanation When do functions have inverses? A good candidate for an inverse of
f : X → Y is g : Y → X “defined by”

g(y) = “the” x such that f(x) = y.

The scare quotes around “defined by” suggest that this is not a definition. At
least, it is not in general. For in order for this definition to specify a function,
there has to be one and only one x such that f(x) = y—the output of g has to
be uniquely specified. Moreover, it has to be specified for every y ∈ Y . If there
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Figure 3.5: The composition g ◦ f of two functions f and g.

are x1 and x2 ∈ X with x1 6= x2 but f(x1) = f(x2), then g(y) would not be
uniquely specified for y = f(x1) = f(x2). And if there is no x at all such that
f(x) = y, then g(y) is not specified at all. In other words, for g to be defined,
f has to be injective and surjective.

Proposition 3.10. If f : X → Y is bijective, f has a unique inverse f−1 : Y →
X.

Proof. Exercise.

Problem 3.1. Show that if f is bijective, an inverse g of f exists, i.e., define
such a g, show that it is a function, and show that it is an inverse of f , i.e.,
f(g(y)) = y and g(f(x)) = x for all x ∈ X and y ∈ Y .

Problem 3.2. Show that if f : X → Y has an inverse g, then f is bijective.

Problem 3.3. Show that if g : Y → X and g′ : Y → X are inverses of f : X →
Y , then g = g′, i.e., for all y ∈ Y , g(y) = g′(y).

3.4 Composition of Functions

sfr:fun:cmp:
sec

explanationWe have already seen that the inverse f−1 of a bijective function f is itself
a function. It is also possible to compose functions f and g to define a new
function by first applying f and then g. Of course, this is only possible if the
ranges and domains match, i.e., the range of f must be a subset of the domain
of g.

Definition 3.11 (Composition). Let f : X → Y and g : Y → Z. The compo-
sition of f with g is the function (g ◦ f) : X → Z, where (g ◦ f)(x) = g(f(x)).

explanationThe function (g ◦ f) : X → Z pairs each member of X with a member of Z.
We specify which member of Z a member of X is paired with as follows—given
an input x ∈ X, first apply the function f to x, which will output some y ∈ Y .
Then apply the function g to y, which will output some z ∈ Z.
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Example 3.12. Consider the functions f(x) = x + 1, and g(x) = 2x. What
function do you get when you compose these two? (g◦f)(x) = g(f(x)). So that
means for every natural number you give this function, you first add one, and
then you multiply the result by two. So their composition is (g◦f)(x) = 2(x+1).

Problem 3.4. Show that if f : X → Y and g : Y → Z are both injective, then
g ◦ f : X → Z is injective.

Problem 3.5. Show that if f : X → Y and g : Y → Z are both surjective,
then g ◦ f : X → Z is surjective.

3.5 Isomorphism

sfr:fun:iso:
sec

explanation An isomorphism is a bijection that preserves the structure of the sets it
relates, where structure is a matter of the relationships that obtain between
the elements of the sets. Consider the following two sets X = {1, 2, 3} and
Y = {4, 5, 6}. These sets are both structured by the relations successor, less
than, and greater than. An isomorphism between the two sets is a bijection that
preserves those structures. So a bijective function f : X → Y is an isomorphism
if, i < j iff f(i) < f(j), i > j iff f(i) > f(j), and j is the successor of i iff f(j)
is the successor of f(i).

Definition 3.13 (Isomorphism). Let U be the pair 〈X,R〉 and V be the pair
〈Y, S〉 such that X and Y are sets and R and S are relations on X and Y
respectively. A bijection f from X to Y is an isomorphism from U to V iff it
preserves the relational structure, that is, for any x1 and x2 in X, 〈x1, x2〉 ∈ R
iff 〈f(x1), f(x2)〉 ∈ S.

Example 3.14. Consider the following two sets X = {1, 2, 3} and Y =
{4, 5, 6}, and the relations less than and greater than. The function f : X → Y
where f(x) = 7− x is an isomorphism between 〈X,<〉 and 〈Y,>〉.

3.6 Partial Functions

sfr:fun:par:
sec

explanation It is sometimes useful to relax the definition of function so that it is not
required that the output of the function is defined for all possible inputs. Such
mappings are called partial functions.

Definition 3.15. A partial function f : X 7→ Y is a mapping which assigns
to every element of X at most one element of Y . If f assigns an element of Y
to x ∈ X, we say f(x) is defined, and otherwise undefined. If f(x) is defined,
we write f(x) ↓, otherwise f(x) ↑. The domain of a partial function f is the
subset of X where it is defined, i.e., dom(f) = {x : f(x) ↓}.

Example 3.16. Every function f : X → Y is also a partial function. Partial
functions that are defined everywhere on X—i.e., what we so far have simply
called a function—are also called total functions.
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Example 3.17. The partial function f : R 7→ R given by f(x) = 1/x is unde-
fined for x = 0, and defined everywhere else.

Problem 3.6. Given f : X 7→ Y , define the partial function g : Y 7→ X by:
for any y ∈ Y , if there is a unique x ∈ X such that f(x) = y, then g(y) = x;
otherwise g(y) ↑. Show that if f is injective, then g(f(x)) = x for all x ∈
dom(f), and f(g(y)) = y for all y ∈ ran(f).

3.7 Functions and Relations

sfr:fun:rel:
sec

explanationA function which maps elements of X to elements of Y obviously defines
a relation between X and Y , namely the relation which holds between x and
y iff f(x) = y. In fact, we might even—if we are interested in reducing the
building blocks of mathematics for instance—identify the function f with this
relation, i.e., with a set of pairs. This then raises the question: which relations
define functions in this way?

Definition 3.18 (Graph of a function). Let f : X 7→ Y be a partial function.
The graph of f is the relation Rf ⊆ X × Y defined by

Rf = {〈x, y〉 : f(x) = y}.

Proposition 3.19. Suppose R ⊆ X × Y has the property that whenever Rxy
and Rxy′ then y = y′. Then R is the graph of the partial function f : X 7→ Y
defined by: if there is a y such that Rxy, then f(x) = y, otherwise f(x) ↑. If
R is also serial, i.e., for each x ∈ X there is a y ∈ Y such that Rxy, then f is
total.

Proof. Suppose there is a y such that Rxy. If there were another y′ 6= y such
that Rxy′, the condition on R would be violated. Hence, if there is a y such
that Rxy, that y is unique, and so f is well-defined. Obviously, Rf = R and f
is total if R is serial.

Problem 3.7. Suppose f : X → Y and g : Y → Z. Show that the graph of
(g ◦ f) is Rf | Rg.
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Chapter 4

The Size of Sets

4.1 Introduction

sfr:siz:int:
sec

When Georg Cantor developed set theory in the 1870s, his interest was in
part to make palatable the idea of an infinite collection—an actual infinity, as
the medievals would say. Key to this rehabilitation of the notion of the infinite
was a way to assign sizes—“cardinalities”—to sets. The cardinality of a finite
set is just a natural number, e.g., ∅ has cardinality 0, and a set containing five
things has cardinality 5. But what about infinite sets? Do they all have the
same cardinality, ∞? It turns out, they do not.

The first important idea here is that of an enumeration. We can list every
finite set by listing all its elements. For some infinite sets, we can also list
all their elements if we allow the list itself to be infinite. Such sets are called
enumerable. Cantor’s surprising result was that some infinite sets are not
enumerable.

4.2 Enumerable Sets

sfr:siz:enm:
sec

One way of specifying a finite set is by listing its elements. But conversely,
since there are only finitely many elements in a set, every finite set can be
enumerated. By this we mean: its elements can be put into a list (a list with
a beginning, where each element of the list other than the first has a unique
predecessor). Some infinite sets can also be enumerated, such as the set of
positive integers.

Definition 4.1 (Enumeration). Informally, an enumeration of a set X is a list
(possibly infinite) of elements of X such that every element of X appears on
the list at some finite position. If X has an enumeration, then X is said to be
enumerable. If X is enumerable and infinite, we say X is denumerable.

explanation A couple of points about enumerations:

1. We count as enumerations only lists which have a beginning and in which
every element other than the first has a single element immediately pre-
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ceding it. In other words, there are only finitely many elements between
the first element of the list and any other element. In particular, this
means that every element of an enumeration has a finite position: the
first element has position 1, the second position 2, etc.

2. We can have different enumerations of the same set X which differ by
the order in which the elements appear: 4, 1, 25, 16, 9 enumerates the
(set of the) first five square numbers just as well as 1, 4, 9, 16, 25 does.

3. Redundant enumerations are still enumerations: 1, 1, 2, 2, 3, 3, . . . enu-
merates the same set as 1, 2, 3, . . . does.

4. Order and redundancy do matter when we specify an enumeration: we
can enumerate the positive integers beginning with 1, 2, 3, 1, . . . , but
the pattern is easier to see when enumerated in the standard way as 1,
2, 3, 4, . . .

5. Enumerations must have a beginning: . . . , 3, 2, 1 is not an enumeration
of the positive integers because it has no first element. To see how this
follows from the informal definition, ask yourself, “at what position in
the list does the number 76 appear?”

6. The following is not an enumeration of the positive integers: 1, 3, 5, . . . ,
2, 4, 6, . . . The problem is that the even numbers occur at places ∞+ 1,
∞+ 2, ∞+ 3, rather than at finite positions.

7. Lists may be gappy: 2, −, 4, −, 6, −, . . . enumerates the even positive
integers.

8. The empty set is enumerable: it is enumerated by the empty list!

Proposition 4.2. If X has an enumeration, it has an enumeration without
gaps or repetitions.

Proof. SupposeX has an enumeration x1, x2, . . . in which each xi is an element
of X or a gap. We can remove repetitions from an enumeration by replacing
repeated elements by gaps. For instance, we can turn the enumeration into a
new one in which x′i is xi if xi is an element of X that is not among x1, . . . ,
xi−1 or is − if it is. We can remove gaps by closing up the elements in the list.
To make precise what “closing up” amounts to is a bit difficult to describe.
Roughly, it means that we can generate a new enumeration x′′1 , x′′2 , . . . , where
each x′′i is the first element in the enumeration x′1, x′2, . . . after x′′i−1 (if there
is one).

The last argument shows that in order to get a good handle on enumerations
and enumerable sets and to prove things about them, we need a more precise
definition. The following provides it.

Definition 4.3 (Enumeration). An enumeration of a set X is any surjective
function f : Z+ → X.
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explanation Let’s convince ourselves that the formal definition and the informal defini-
tion using a possibly gappy, possibly infinite list are equivalent. A surjective
function (partial or total) from Z+ to a set X enumerates X. Such a function
determines an enumeration as defined informally above: the list f(1), f(2),
f(3), . . . . Since f is surjective, every element of X is guaranteed to be the
value of f(n) for some n ∈ Z+. Hence, every element of X appears at some
finite position in the list. Since the function may not be injective, the list may
be redundant, but that is acceptable (as noted above).

On the other hand, given a list that enumerates all elements of X, we can
define a surjective function f : Z+ → X by letting f(n) be the nth element
of the list that is not a gap, or the final element of the list if there is no nth
element. There is one case in which this does not produce a surjective function:
if X is empty, and hence the list is empty. So, every non-empty list determines
a surjective function f : Z+ → X.

Definition 4.4. sfr:siz:enm:

defn:enumerable

A set X is enumerable iff it is empty or has an enumeration.

Example 4.5. A function enumerating the positive integers (Z+) is simply
the identity function given by f(n) = n. A function enumerating the natural
numbers N is the function g(n) = n− 1.

Problem 4.1. According to Definition 4.4, a set X is enumerable iff X = ∅ or
there is a surjective f : Z+ → X. It is also possible to define “enumerable set”
precisely by: a set is enumerable iff there is an injective function g : X → Z+.
Show that the definitions are equivalent, i.e., show that there is an injective
function g : X → Z+ iff either X = ∅ or there is a surjective f : Z+ → X.

Example 4.6. The functions f : Z+ → Z+ and g : Z+ → Z+ given by

f(n) = 2n and

g(n) = 2n+ 1

enumerate the even positive integers and the odd positive integers, respectively.
However, neither function is an enumeration of Z+, since neither is surjective.

Problem 4.2. Define an enumeration of the positive squares 4, 9, 16, . . .

Example 4.7. The function f(n) = (−1)nd (n−1)2 e (where dxe denotes the
ceiling function, which rounds x up to the nearest integer) enumerates the set
of integers Z. Notice how f generates the values of Z by “hopping” back and
forth between positive and negative integers:

f(1) f(2) f(3) f(4) f(5) f(6) f(7) . . .

−d 02e d 12e −d 22e d 32e −d 42e d 52e −d 62e . . .

0 1 −1 2 −2 3 . . .
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You can also think of f as defined by cases as follows:

f(n) =


0 if n = 1

n/2 if n is even

−(n− 1)/2 if n is odd and > 1

Problem 4.3. Show that if X and Y are enumerable, so is X ∪ Y .

Problem 4.4. Show by induction on n that if X1, X2, . . . , Xn are all enu-
merable, so is X1 ∪ · · · ∪Xn.

explanationThat is fine for “easy” sets. What about the set of, say, pairs of positive
integers?

Z+ × Z+ = {〈n,m〉 : n,m ∈ Z+}

We can organize the pairs of positive integers in an array, such as the following:

1 2 3 4 . . .
1 〈1, 1〉 〈1, 2〉 〈1, 3〉 〈1, 4〉 . . .
2 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈2, 4〉 . . .
3 〈3, 1〉 〈3, 2〉 〈3, 3〉 〈3, 4〉 . . .
4 〈4, 1〉 〈4, 2〉 〈4, 3〉 〈4, 4〉 . . .
...

...
...

...
...

. . .

Clearly, every ordered pair in Z+×Z+ will appear exactly once in the array.
In particular, 〈n,m〉 will appear in the nth column and mth row. But how do
we organize the elements of such an array into a one-way list? The pattern in
the array below demonstrates one way to do this:

1 2 4 7 . . .
3 5 8 . . . . . .
6 9 . . . . . . . . .
10 . . . . . . . . . . . .
...

...
...

...
. . .

This pattern is called Cantor’s zig-zag method. Other patterns are perfectly
permissible, as long as they “zig-zag” through every cell of the array. By
Cantor’s zig-zag method, the enumeration for Z+×Z+ according to this scheme
would be:

〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈2, 2〉, 〈3, 1〉, 〈1, 4〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉, . . .

What ought we do about enumerating, say, the set of ordered triples of
positive integers?

Z+ × Z+ × Z+ = {〈n,m, k〉 : n,m, k ∈ Z+}
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We can think of Z+ × Z+ × Z+ as the Cartesian product of Z+ × Z+ and Z+,
that is,

(Z+)3 = (Z+ × Z+)× Z+ = {〈〈n,m〉, k〉 : 〈n,m〉 ∈ Z+ × Z+, k ∈ Z+}

and thus we can enumerate (Z+)3 with an array by labelling one axis with the
enumeration of Z+, and the other axis with the enumeration of (Z+)2:

1 2 3 4 . . .
〈1,1〉 〈1, 1, 1〉 〈1, 1, 2〉 〈1, 1, 3〉 〈1, 1, 4〉 . . .
〈1,2〉 〈1, 2, 1〉 〈1, 2, 2〉 〈1, 2, 3〉 〈1, 2, 4〉 . . .
〈2,1〉 〈2, 1, 1〉 〈2, 1, 2〉 〈2, 1, 3〉 〈2, 1, 4〉 . . .
〈1,3〉 〈1, 3, 1〉 〈1, 3, 2〉 〈1, 3, 3〉 〈1, 3, 4〉 . . .
...

...
...

...
...

. . .

Thus, by using a method like Cantor’s zig-zag method, we may similarly obtain
an enumeration of (Z+)3.

Cantor’s zig-zag method makes the enumerability of (Z+)2 (and analo-
gously, (Z+)3, etc.) visually evident. Following the zig-zag line in the array
and counting the places, we can tell that 〈2, 3〉 is at place 8, but specifying the
inverse g : (Z+)2 → Z+ of the zig-zag enumeration such that

g(〈1, 1〉) = 1, g(〈1, 2〉) = 2, g(〈2, 1〉) = 3, . . . g(〈2, 3〉) = 8, . . .

would be helpful. To calculate the position of each pair in the enumeration, we
can use the function below. (The exact derivation of the function is somewhat
messy, so we are skipping it here.)

g(n,m) =
(n+m− 2)(n+m− 1)

2
+ n

Accordingly, the pair 〈2, 3〉 is in position ((2+3−2)(2+3−1)/2)+2 = (3·4/2)+
2 = (12/2)+2 = 8; pair 〈3, 7〉 is in position ((3+7−2)(3+7−1)/2)+3 = 39.

Functions like g above, i.e., inverses of enumerations of (Z+)2, are called
pairing functions.

Definition 4.8 (Pairing function). A function f : (Z+)2 → Z+ is an arith-
metical pairing function if f is total and injective. We also say that f encodes
(Z+)2, and that for f(〈n,m〉) = k, k is the code for 〈n,m〉.

explanation The idea is that we can use such functions to encode pairs of positive integers
in Z+, or, in other words, represent pairs of positive integers as positive integers.
Using the inverse of the pairing function, we can decode the integer, i.e., find
out which pair of positive integers is represented.

There are other enumerations of (Z+)2 that make it easier to figure out
what their inverses are. Here is one. Instead of visualizing the enumeration
in an array, start with the list of positive integers associated with (initially)
empty spaces. Imagine filling these spaces successively with pairs 〈n,m〉 as
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follow. Starting with the pairs that have 1 in the first place (i.e., pairs 〈1,m〉),
put the first (i.e., 〈1, 1〉) in the first empty place, then skip an empty space, put
the second (i.e., 〈1, 2〉) in the next empty place, skip one again, and so forth.
The (incomplete) beginning of our enumeration now looks like this

f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10) . . .

〈1, 1〉 〈1, 2〉 〈1, 3〉 〈1, 4〉 〈1, 5〉 . . .

Repeat this with pairs 〈2,m〉 for the place that still remain empty, again skip-
ping every other empty place:

f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10) . . .

〈1, 1〉 〈2, 1〉 〈1, 2〉 〈1, 3〉 〈2, 2〉 〈1, 4〉 〈1, 5〉 〈2, 3〉 . . .

Enter pairs 〈3,m〉, 〈4,m〉, etc., in the same way. Our completed enumeration
thus starts like this:

f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10) . . .

〈1, 1〉 〈2, 1〉 〈1, 2〉 〈3, 1〉 〈1, 3〉 〈2, 2〉 〈1, 4〉 〈4, 1〉 〈1, 5〉 〈2, 3〉 . . .

If we number the cells in the array above according to this enumeration, we
will not find a neat zig-zag line, but this arrangement:

1 2 3 4 5 6 . . .
1 1 3 5 7 9 11 . . .
2 2 6 10 14 18 . . . . . .
3 4 12 20 28 . . . . . . . . .
4 8 24 40 . . . . . . . . . . . .
5 16 48 . . . . . . . . . . . . . . .
6 32 . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

. . .

We can see that the pairs in the first row are in the odd numbered places
of our enumeration, i.e., pair 〈1,m〉 is in place 2m− 1; pairs in the second row,
〈1,m〉, are in places whose number is the double of an odd number, specifically,
2 · (2m− 1); pairs in the third row, 〈1,m〉, are in places whose number is four
times an odd number, 4 · (2m − 1); and so on. The factors of (2m − 1) for
each row, 1, 2, 4, 8, . . . , are powers of 2: 20, 21, 22, 23, . . . In fact, the relevant
exponent is one less than the first member of the pair in question. Thus, for
pair 〈n,m〉 the factor is n−1. This gives us the general formula: 2n−1 ·(2m−1),
and hence:

Example 4.9. The function f : (Z+)2 → Z+ given by

h(n,m) = 2n−1(2m− 1)

is a pairing function for the set of pairs of positive integers (Z+)2.
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explanation Accordingly, in our second enumeration of (Z+)2, the pair 〈2, 3〉 is in posi-
tion 22−1 · (2 ·3−1) = 2 ·5 = 10; pair 〈3, 7〉 is in position 23−1 · (2 ·7−1) = 52.

Another common pairing function that encodes (Z+)2 is the following:

Example 4.10. The function f : (Z+)2 → Z+ given by

j(n,m) = 2n3m

is a pairing function for the set of pairs of positive integers (Z+)2.

explanation j is injective, but nor surjective. That means the inverse of j is a partial,
surjective function, and hence an enumeration of (Z+)2.

Problem 4.5. Give an enumeration of the set of all positive rational numbers.
(A positive rational number is one that can be written as a fraction n/m with
n,m ∈ Z+).

Problem 4.6. Show that Q is enumerable. (A rational number is one that
can be written as a fraction z/m with z ∈ Z, m ∈ Z+).

Problem 4.7. Define an enumeration of B∗.

Problem 4.8. Recall from your introductory logic course that each possible
truth table expresses a truth function. In other words, the truth functions are
all functions from Bk → B for some k. Prove that the set of all truth functions
is enumerable.

Problem 4.9. Show that the set of all finite subsets of an arbitrary infinite
enumerable set is enumerable.

Problem 4.10. A set of positive integers is said to be cofinite iff it is the
complement of a finite set of positive integers. Let I be the set that contains
all the finite and cofinite sets of positive integers. Show that I is enumerable.

Problem 4.11. Show that the enumerable union of enumerable sets is enu-
merable. That is, whenever X1, X2, . . . are sets, and each Xi is enumerable,
then the union

⋃∞
i=1Xi of all of them is also enumerable.

Problem 4.12. Specify a function that encodes N3.

4.3 Non-enumerable Sets

sfr:siz:nen:
sec

Some sets, such as the set Z+ of positive integers, are infinite. So far we’ve
seen examples of infinite sets which were all enumerable. However, there are
also infinite sets which do not have this property. Such sets are called non-
enumerable.

First of all, it is perhaps already surprising that there are non-enumerable
sets. For any enumerable set X there is a surjective function f : Z+ → X. If a
set is non-enumerable there is no such function. That is, no function mapping
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the infinitely many elements of Z+ to X can exhaust all of X. So there are
“more” elements of X than the infinitely many positive integers.

How would one prove that a set is non-enumerable? You have to show that
no such surjective function can exist. Equivalently, you have to show that the
elements of X cannot be enumerated in a one way infinite list. The best way
to do this is to show that every list of elements of X must leave at least one
element out; or that no function f : Z+ → X can be surjective. We can do this
using Cantor’s diagonal method. Given a list of elements of X, say, x1, x2, . . . ,
we construct another element of X which, by its construction, cannot possibly
be on that list.

Our first example is the set Bω of all infinite, non-gappy sequences of 0’s
and 1’s.

Theorem 4.11.sfr:siz:nen:

thm-nonenum-bin-omega

Bω is non-enumerable.

Proof. Suppose, by way of contradiction, that Bω is enumerable, i.e., suppose
that there is a list s1, s2, s3, s4, . . . of all elements of Bω. Each of these si is
itself an infinite sequence of 0’s and 1’s. Let’s call the j-th element of the i-th
sequence in this list si(j). Then the i-th sequence si is

si(1), si(2), si(3), . . .

We may arrange this list, and the elements of each sequence si in it, in an
array:

1 2 3 4 . . .
1 s1(1) s1(2) s1(3) s1(4) . . .
2 s2(1) s2(2) s2(3) s2(4) . . .
3 s3(1) s3(2) s3(3) s3(4) . . .
4 s4(1) s4(2) s4(3) s4(4) . . .
...

...
...

...
...

. . .

The labels down the side give the number of the sequence in the list s1, s2, . . . ;
the numbers across the top label the elements of the individual sequences. For
instance, s1(1) is a name for whatever number, a 0 or a 1, is the first element
in the sequence s1, and so on.

Now we construct an infinite sequence, s, of 0’s and 1’s which cannot pos-
sibly be on this list. The definition of s will depend on the list s1, s2, . . . . Any
infinite list of infinite sequences of 0’s and 1’s gives rise to an infinite sequence s
which is guaranteed to not appear on the list.

To define s, we specify what all its elements are, i.e., we specify s(n) for all
n ∈ Z+. We do this by reading down the diagonal of the array above (hence
the name “diagonal method”) and then changing every 1 to a 0 and every 1
to a 0. More abstractly, we define s(n) to be 0 or 1 according to whether the
n-th element of the diagonal, sn(n), is 1 or 0.

s(n) =

{
1 if sn(n) = 0

0 if sn(n) = 1.
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If you like formulas better than definitions by cases, you could also define
s(n) = 1− sn(n).

Clearly s is a non-gappy infinite sequence of 0’s and 1’s, since it is just the
mirror sequence to the sequence of 0’s and 1’s that appear on the diagonal of
our array. So s is an element of Bω. But it cannot be on the list s1, s2, . . .
Why not?

It can’t be the first sequence in the list, s1, because it differs from s1 in the
first element. Whatever s1(1) is, we defined s(1) to be the opposite. It can’t be
the second sequence in the list, because s differs from s2 in the second element:
if s2(2) is 0, s(2) is 1, and vice versa. And so on.

More precisely: if s were on the list, there would be some k so that s = sk.
Two sequences are identical iff they agree at every place, i.e., for any n, s(n) =
sk(n). So in particular, taking n = k as a special case, s(k) = sk(k) would
have to hold. sk(k) is either 0 or 1. If it is 0 then s(k) must be 1—that’s how
we defined s. But if sk(k) = 1 then, again because of the way we defined s,
s(k) = 0. In either case s(k) 6= sk(k).

We started by assuming that there is a list of elements of Bω, s1, s2, . . .
From this list we constructed a sequence s which we proved cannot be on the
list. But it definitely is a sequence of 0’s and 1’s if all the si are sequences of
0’s and 1’s, i.e., s ∈ Bω. This shows in particular that there can be no list of
all elements of Bω, since for any such list we could also construct a sequence s
guaranteed to not be on the list, so the assumption that there is a list of all
sequences in Bω leads to a contradiction.

explanation This proof method is called “diagonalization” because it uses the diagonal
of the array to define s. Diagonalization need not involve the presence of an
array: we can show that sets are not enumerable by using a similar idea even
when no array and no actual diagonal is involved.

Theorem 4.12. sfr:siz:nen:

thm-nonenum-pownat

℘(Z+) is not enumerable.

Proof. We proceed in the same way, by showing that for every list of subsets
of Z+ there is a subset of Z+ which cannot be on the list. Suppose the following
is a given list of subsets of Z+:

Z1, Z2, Z3, . . .

We now define a set Z such that for any n ∈ Z+, n ∈ Z iff n /∈ Zn:

Z = {n ∈ Z+ : n /∈ Zn}

Z is clearly a set of positive integers, since by assumption each Zn is, and thus
Z ∈ ℘(Z+). But Z cannot be on the list. To show this, we’ll establish that for
each k ∈ Z+, Z 6= Zk.

So let k ∈ Z+ be arbitrary. We’ve defined Z so that for any n ∈ Z+, n ∈ Z
iff n /∈ Zn. In particular, taking n = k, k ∈ Z iff k /∈ Zk. But this shows that
Z 6= Zk, since k is an element of one but not the other, and so Z and Zk have
different elements. Since k was arbitrary, Z is not on the list Z1, Z2, . . .
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explanationThe preceding proof did not mention a diagonal, but you can think of it as
involving a diagonal if you picture it this way: Imagine the sets Z1, Z2, . . . ,
written in an array, where each element j ∈ Zi is listed in the j-th column.
Say the first four sets on that list are {1, 2, 3, . . . }, {2, 4, 6, . . . }, {1, 2, 5}, and
{3, 4, 5, . . . }. Then the array would begin with

Z1 = {1, 2, 3, 4, 5, 6, . . . }
Z2 = { 2, 4, 6, . . . }
Z3 = {1, 2, 5 }
Z4 = { 3, 4, 5, 6, . . . }

...
. . .

Then Z is the set obtained by going down the diagonal, leaving out any numbers
that appear along the diagonal and include those j where the array has a gap in
the j-th row/column. In the above case, we would leave out 1 and 2, include 3,
leave out 4, etc.

Problem 4.13. Show that ℘(N) is non-enumerable by a diagonal argument.

Problem 4.14. Show that the set of functions f : Z+ → Z+ is non-enumerable
by an explicit diagonal argument. That is, show that if f1, f2, . . . , is a list of
functions and each fi : Z+ → Z+, then there is some f : Z+ → Z+ not on this
list.

4.4 Reduction

sfr:siz:red:
sec

We showed ℘(Z+) to be non-enumerable by a diagonalization argument. We
already had a proof that Bω, the set of all infinite sequences of 0s and 1s, is non-
enumerable. Here’s another way we can prove that ℘(Z+) is non-enumerable:
Show that if ℘(Z+) is enumerable then Bω is also enumerable. Since we know
Bω is not enumerable, ℘(Z+) can’t be either. This is called reducing one
problem to another—in this case, we reduce the problem of enumerating Bω to
the problem of enumerating ℘(Z+). A solution to the latter—an enumeration
of ℘(Z+)—would yield a solution to the former—an enumeration of Bω.

How do we reduce the problem of enumerating a set Y to that of enumer-
ating a set X? We provide a way of turning an enumeration of X into an
enumeration of Y . The easiest way to do that is to define a surjective function
f : X → Y . If x1, x2, . . . enumerates X, then f(x1), f(x2), . . . would enumer-
ate Y . In our case, we are looking for a surjective function f : ℘(Z+)→ Bω.

Problem 4.15. Show that if there is an injective function g : Y → X, and
Y is non-enumerable, then so is X. Do this by showing how you can use g to
turn an enumeration of X into one of Y .

Proof of Theorem 4.12 by reduction. Suppose that ℘(Z+) were enumerable, and
thus that there is an enumeration of it, Z1, Z2, Z3, . . .
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Define the function f : ℘(Z+) → Bω by letting f(Z) be the sequence sk
such that sk(n) = 1 iff n ∈ Z, and sk(n) = 0 otherwise. This clearly defines
a function, since whenever Z ⊆ Z+, any n ∈ Z+ either is an element of Z or
isn’t. For instance, the set 2Z+ = {2, 4, 6, . . . } of positive even numbers gets
mapped to the sequence 010101 . . . , the empty set gets mapped to 0000 . . . and
the set Z+ itself to 1111 . . . .

It also is surjective: Every sequence of 0s and 1s corresponds to some set
of positive integers, namely the one which has as its members those integers
corresponding to the places where the sequence has 1s. More precisely, suppose
s ∈ Bω. Define Z ⊆ Z+ by:

Z = {n ∈ Z+ : s(n) = 1}

Then f(Z) = s, as can be verified by consulting the definition of f .
Now consider the list

f(Z1), f(Z2), f(Z3), . . .

Since f is surjective, every member of Bω must appear as a value of f for some
argument, and so must appear on the list. This list must therefore enumerate
all of Bω.

So if ℘(Z+) were enumerable, Bω would be enumerable. But Bω is non-
enumerable (Theorem 4.11). Hence ℘(Z+) is non-enumerable.

explanation It is easy to be confused about the direction the reduction goes in. For
instance, a surjective function g : Bω → X does not establish that X is non-
enumerable. (Consider g : Bω → B defined by g(s) = s(1), the function that
maps a sequence of 0’s and 1’s to its first element. It is surjective, because
some sequences start with 0 and some start with 1. But B is finite.) Note also
that the function f must be surjective, or otherwise the argument does not go
through: f(x1), f(x2), . . . would then not be guaranteed to include all the
elements of Y . For instance, h : Z+ → Bω defined by

h(n) = 000 . . . 0︸ ︷︷ ︸
n 0’s

is a function, but Z+ is enumerable.

Problem 4.16. Show that the set of all sets of pairs of positive integers is
non-enumerable by a reduction argument.

Problem 4.17. Show that Nω, the set of infinite sequences of natural numbers,
is non-enumerable by a reduction argument.

Problem 4.18. Let P be the set of functions from the set of positive integers
to the set {0}, and let Q be the set of partial functions from the set of positive
integers to the set {0}. Show that P is enumerable and Q is not. (Hint: reduce
the problem of enumerating Bω to enumerating Q).
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Problem 4.19. Let S be the set of all surjective functions from the set of
positive integers to the set {0,1}, i.e., S consists of all surjective f : Z+ → B.
Show that S is non-enumerable.

Problem 4.20. Show that the set R of all real numbers is non-enumerable.

4.5 Equinumerous Sets

sfr:set:equ:
sec

introWe have an intuitive notion of “size” of sets, which works fine for finite
sets. But what about infinite sets? If we want to come up with a formal
way of comparing the sizes of two sets of any size, it is a good idea to start
with defining when sets are the same size. Let’s say sets of the same size are
equinumerous. We want the formal notion of equinumerosity to correspond
with our intuitive notion of “same size,” hence the formal notion ought to
satisfy the following properties:

Reflexivity: Every set is equinumerous with itself.

Symmetry: For any sets X and Y , if X is equinumerous with Y , then Y is
equinumerous with X.

Transitivity: For any sets X,Y , and Z, if X is equinumerous with Y and Y
is equinumerous with Z, then X is equinumerous with Z.

In other words, we want equinumerosity to be an equivalence relation.

Definition 4.13. A set X is equinumerous with a set Y , X ≈ Y , if and only
if there is a bijective f : X → Y .

Proposition 4.14. Equinumerosity defines an equivalence relation.

Proof. Let X,Y , and Z be sets.

Reflexivity: Using the identity map 1X : X → X, where 1X(x) = x for all
x ∈ X, we see that X is equinumerous with itself (clearly, 1X is bijective).

Symmetry: Suppose thatX is equinumerous with Y . Then there is a bijective
f : X → Y . Since f is bijective, its inverse f−1 exists and also bijective.
Hence, f−1 : Y → X is a bijective function from Y to X, so Y is also
equinumerous with X.

Transitivity: Suppose that X is equinumerous with Y via the bijective func-
tion f : X → Y and that Y is equinumerous with Z via the bijective
function g : Y → Z. Then the composition of g ◦ f : X → Z is bijective,
and X is thus equinumerous with Z.

Therefore, equinumerosity is an equivalence relation.

Theorem 4.15. Suppose X and Y are equinumerous. Then X is enumerable
if and only if Y is.
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Proof. Let X and Y be equinumerous. Suppose that X is enumerable. Then
either X = ∅ or there is a surjective function f : Z+ → X. Since X and Y
are equinumerous, there is a bijective g : X → Y . If X = ∅, then Y = ∅ also
(otherwise there would be an element y ∈ Y but no x ∈ X with g(x) = y). If,
on the other hand, f : Z+ → X is surjective, then g ◦ f : Z+ → Y is surjective.
To see this, let y ∈ Y . Since g is surjective, there is an x ∈ X such that
g(x) = y. Since f is surjective, there is an n ∈ Z+ such that f(n) = x. Hence,

(g ◦ f)(n) = g(f(n)) = g(x) = y

and thus g ◦ f is surjective. We have that g ◦ f is an enumeration of Y , and so
Y is enumerable.

Problem 4.21. Show that if X is equinumerous with U and and Y is equinu-
merous with V , and the intersections X ∩ Y and U ∩ V are empty, then the
unions X ∪ Y and U ∪ V are equinumerous.

Problem 4.22. Show that if X is infinite and enumerable, then it is equinu-
merous with the positive integers Z+.

4.6 Comparing Sizes of Sets

sfr:siz:car:
sec

explanation Just like we were able to make precise when two sets have the same size in a
way that also accounts for the size of infinite sets, we can also compare the sizes
of sets in a precise way. Our definition of “is smaller than (or equinumerous)”
will require, instead of a bijection between the sets, a total injective function
from the first set to the second. If such a function exists, the size of the first set
is less than or equal to the size of the second. Intuitively, an injective function
from one set to another guarantees that the range of the function has at least
as many elements as the domain, since no two elements of the domain map to
the same element of the range.

Definition 4.16. X is no larger than Y , X � Y , if and only if there is an
injective function f : X → Y .

Theorem 4.17 (Schröder-Bernstein). Let X and Y be sets. If X � Y and
Y � X, then X ≈ Y .

explanation In other words, if there is a total injective function from X to Y , and if there
is a total injective function from Y back to X, then there is a total bijection
from X to Y . Sometimes, it can be difficult to think of a bijection between
two equinumerous sets, so the Schröder-Bernstein theorem allows us to break
the comparison down into cases so we only have to think of an injection from
the first to the second, and vice-versa. The Schröder-Bernstein theorem, apart
from being convenient, justifies the act of discussing the “sizes” of sets, for it
tells us that set cardinalities have the familiar anti-symmetric property that
numbers have.
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Definition 4.18. X is smaller than Y , X ≺ Y , if and only if there is an in-
jective function f : X → Y but no bijective g : X → Y .

Theorem 4.19 (Cantor).sfr:siz:car:

thm:cantor

For all X, X ≺ ℘(X).

Proof. The function f : X → ℘(X) that maps any x ∈ X to its singleton {x}
is injective, since if x 6= y then also f(x) = {x} 6= {y} = f(y).

There cannot be a surjective function g : X → ℘(X), let alone a bijective
one. For suppose that g : X → ℘(X). Since g is total, every x ∈ X is mapped
to a subset g(x) ⊆ X. We show that g cannot be surjective. To do this, we
define a subset Y ⊆ X which by definition cannot be in the range of g. Let

Y = {x ∈ X : x /∈ g(x)}.

Since g(x) is defined for all x ∈ X, Y is clearly a well-defined subset of X. But,
it cannot be in the range of g. Let x ∈ X be arbitrary, we show that Y 6= g(x).
If x ∈ g(x), then it does not satisfy x /∈ g(x), and so by the definition of Y , we
have x /∈ Y . If x ∈ Y , it must satisfy the defining property of Y , i.e., x /∈ g(x).
Since x was arbitrary this shows that for each x ∈ X, x ∈ g(x) iff x /∈ Y , and
so g(x) 6= Y . So Y cannot be in the range of g, contradicting the assumption
that g is surjective.

explanationIt’s instructive to compare the proof of Theorem 4.19 to that of Theo-
rem 4.12. There we showed that for any list Z1, Z2, . . . , of subsets of Z+ one
can construct a set Z of numbers guaranteed not to be on the list. It was
guaranteed not to be on the list because, for every n ∈ Z+, n ∈ Zn iff n /∈ Z.
This way, there is always some number that is an element of one of Zn and
Z but not the other. We follow the same idea here, except the indices n are
now elements of X instead of Z+. The set Y is defined so that it is different
from g(x) for each x ∈ X, because x ∈ g(x) iff x /∈ Y . Again, there is always
an element of X which is an element of one of g(x) and Y but not the other.
And just as Z therefore cannot be on the list Z1, Z2, . . . , Y cannot be in the
range of g.

Problem 4.23. Show that there cannot be an injective function g : ℘(X)→ X,
for any set X. Hint: Suppose g : ℘(X)→ X is injective. Then for each x ∈ X
there is at most one Y ⊆ X such that g(Y ) = x. Define a set Y such that for
every x ∈ X, g(Y ) 6= x.
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