Many of our comparisons involve describing some objects as being “less than”, “equal to”, or “greater than” other objects, in a certain respect. These involve order relations. But there are different kinds of order relations. For instance, some require that any two objects be comparable, others don’t. Some include identity (like ≤) and some exclude it (like <). It will help us to have a taxonomy here.

Definition rel.1 (Preorder). A relation which is both reflexive and transitive is called a preorder.

Definition rel.2 (Partial order). A preorder which is also anti-symmetric is called a partial order.

Definition rel.3 (Linear order). A partial order which is also connected is called a total order or linear order.

Every linear order is also a partial order, and every partial order is also a preorder, but the converses don’t hold.

Example rel.4. Every linear order is also a partial order, and every partial order is also a preorder, but the converses don’t hold. The universal relation on \(A \) is a preorder, since it is reflexive and transitive. But, if \(A \) has more than one element, the universal relation is not anti-symmetric, and so not a partial order.

Example rel.5. Consider the no longer than relation \(\preceq \) on \(\mathbb{B}^* \): \(x \preceq y \) iff \(\text{len}(x) \leq \text{len}(y) \). This is a preorder (reflexive and transitive), and even connected, but not a partial order, since it is not anti-symmetric. For instance, \(01 \preceq 10 \) and \(10 \preceq 01 \), but \(01 \neq 10 \).

Example rel.6. An important partial order is the relation \(\subseteq \) on a set of sets. This is not in general a linear order, since if \(a \neq b \) and we consider \(\varphi(\{a, b\}) = \emptyset, \{a\}, \{b\}, \{a, b\} \), we see that \(\{a\} \not\subseteq \{b\} \) and \(\{a\} \neq \{b\} \) and \(\{b\} \not\subseteq \{a\} \).

Example rel.7. The relation of divisibility without remainder gives us a partial order which isn’t a linear order. For integers \(n, m \), we write \(n \mid m \) to mean \(n \) (evenly) divides \(m \), i.e., iff there is some integer \(k \) so that \(m = kn \). On \(\mathbb{N} \), this is a partial order, but not a linear order: for instance, \(2 \nmid 3 \) and also \(3 \nmid 2 \). Considered as a relation on \(\mathbb{Z} \), divisibility is only a preorder since it is not anti-symmetric: \(1 \mid -1 \) and \(-1 \mid 1 \) but \(1 \neq -1 \).

Definition rel.8 (Strict order). A strict order is a relation which is irreflexive, asymmetric, and transitive.

Definition rel.9 (Strict linear order). A strict order which is also connected is called a strict linear order.
Example rel.10. \(\leq \) is the linear order corresponding to the strict linear order \(<\). \(\subseteq \) is the partial order corresponding to the strict order \(\subset\).

Definition rel.11 (Total order). A strict order which is also connected is called a total order. This is also sometimes called a strict linear order.

Any strict order \(R \) on \(A \) can be turned into a partial order by adding the diagonal \(\text{Id}_A \), i.e., adding all the pairs \((x, x) \). (This is called the reflexive closure of \(R \).) Conversely, starting from a partial order, one can get a strict order by removing \(\text{Id}_A \). These next two results make this precise.

Proposition rel.12. If \(R \) is a strict order on \(A \), then \(R^+ = R \cup \text{Id}_A \) is a partial order. Moreover, if \(R \) is total, then \(R^+ \) is a linear order.

Proof. Suppose \(R \) is a strict order, i.e., \(R \subseteq A^2 \) and \(R \) is irreflexive, asymmetric, and transitive. Let \(R^+ = R \cup \text{Id}_A \). We have to show that \(R^+ \) is reflexive, antisymmetric, and transitive.

\(R^+ \) is clearly reflexive, since \((x, x) \in \text{Id}_A \subseteq R^+ \) for all \(x \in A \).

To show \(R^+ \) is antisymmetric, suppose for reductio that \(R^+ \) itself is a strict order, i.e., \(R \cup \text{Id}_A \), but \(x \neq y \). Since \((x, y) \in R \cup \text{Id}_X \), but \((x, y) \notin \text{Id}_X \), we must have \((x, y) \in R \), i.e., \(Rxy \). Similarly, \(Ryx \). But this contradicts the assumption that \(R \) is asymmetric.

To establish transitivity, suppose that \(R^+ xy \) and \(R^+ yz \). If both \((x, y) \in R \) and \((y, z) \in R \), then \((x, z) \in R \) since \(R \) is transitive. Otherwise, either \((x, y) \in \text{Id}_X \), i.e., \(x = y \), or \((y, z) \in \text{Id}_X \), i.e., \(y = z \). In the first case, we have that \(R^+ yz \) by assumption, \(x = y \), hence \(R^+ xz \). Similarly in the second case. In either case, \(R^+ xz \), thus, \(R^+ \) is also transitive.

Concerning the “moreover” clause, suppose \(R \) is a total order, i.e., that \(R \) is connected. So for all \(x \neq y \), either \(Rxy \) or \(Ryx \), i.e., either \((x, y) \in R \) or \((y, x) \in R \). Since \(R \subseteq R^+ \), this remains true of \(R^+ \), so \(R^+ \) is connected as well. \(\square \)

Proposition rel.13. If \(R \) is a partial order on \(X \), then \(R^- = R \setminus \text{Id}_X \) is a strict order. Moreover, if \(R \) is linear, then \(R^- \) is total.

Proof. This is left as an exercise. \(\square \)

Problem rel.1. Give a proof of Proposition rel.13.

Example rel.14. \(\leq \) is the linear order corresponding to the total order \(<\). \(\subseteq \) is the partial order corresponding to the strict order \(\subset\).

The following simple result which establishes that total orders satisfy an extensionality-like property:

Proposition rel.15. If \(< \) totally orders \(A \), then:

\[(\forall a,b \in A)((\forall x \in A)(x < a \leftrightarrow x < b) \rightarrow a = b)\]
Proof. Suppose $(\forall x \in A)(x < a \leftrightarrow x < b)$. If $a < b$, then $a < a$, contradicting the fact that $<$ is irreflexive; so $a \not< b$. Exactly similarly, $b \not< a$. So $a = b$, as $<$ is connected.

\[\square \]

Photo Credits

Bibliography