Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transitive. Relations \(R \) that have all three of these properties are very common.

Definition rel.1 (Equivalence relation). A relation \(R \subseteq A^2 \) that is reflexive, symmetric, and transitive is called an *equivalence relation*. Elements \(x \) and \(y \) of \(A \) are said to be \(R \)-equivalent if \(Rxy \).

Equivalence relations give rise to the notion of an *equivalence class*. An equivalence relation “chunks up” the domain into different partitions. Within each partition, all the objects are related to one another; and no objects from different partitions relate to one another. Sometimes, it’s helpful just to talk about these partitions directly. To that end, we introduce a definition:

Definition rel.2. Let \(R \subseteq A^2 \) be an equivalence relation. For each \(x \in A \), the *equivalence class* of \(x \) in \(A \) is the set \([x]_R = \{ y \in A : Rxy \} \). The *quotient* of \(A \) under \(R \) is \(A/R = \{ [x]_R : x \in A \} \), i.e., the set of these equivalence classes.

The next result vindicates the definition of an equivalence class, in proving that the equivalence classes are indeed the partitions of \(A \):

Proposition rel.3. If \(R \subseteq A^2 \) is an equivalence relation, then \(Rxy \) iff \([x]_R = [y]_R \).

Proof. For the left-to-right direction, suppose \(Rxy \), and let \(z \in [x]_R \). By definition, then, \(Rxz \). Since \(R \) is an equivalence relation, \(Ryz \). (Spelling this out: as \(Rxy \) and \(R \) is symmetric we have \(Ryx \), and as \(Rxz \) and \(R \) is transitive we have \(Ryz \).) So \(z \in [y]_R \). Generalising, \([x]_R \subseteq [y]_R \). But exactly similarly, \([y]_R \subseteq [x]_R \). So \([x]_R = [y]_R \), by extensionality.

For the right-to-left direction, suppose \([x]_R = [y]_R \). Since \(R \) is reflexive, \(Ryy \), so \(y \in [y]_R \). Thus also \(y \in [x]_R \) by the assumption that \([x]_R = [y]_R \). So \(Rxy \). \(\square \)

Example rel.4. A nice example of equivalence relations comes from modular arithmetic. For any \(a \), \(b \), and \(n \in \mathbb{N} \), say that \(a \equiv_n b \) iff dividing \(a \) by \(n \) gives the same remainder as dividing \(b \) by \(n \). (Somewhat more symbolically: \(a \equiv_n b \) iff, for some \(k \in \mathbb{Z} \), \(a - b = kn \).) Now, \(\equiv_n \) is an equivalence relation, for any \(n \).

And there are exactly \(n \) distinct equivalence classes generated by \(\equiv_n \); that is, \(\mathbb{N}/\equiv_n \) has \(n \) elements. These are: the set of numbers divisible by \(n \) without remainder, i.e., \([0]_{\equiv_n} \); the set of numbers divisible by \(n \) with remainder 1, i.e., \([1]_{\equiv_n} \); \(\ldots \); and the set of numbers divisible by \(n \) with remainder \(n-1 \), i.e., \([n-1]_{\equiv_n} \).

Problem rel.1. Show that \(\equiv_n \) is an equivalence relation, for any \(n \in \mathbb{N} \), and that \(\mathbb{N}/\equiv_n \) has exactly \(n \) members.