infinite.1 Dedekind Algebras and Arithmetical Induction

Crucially, now, a Dedekind algebra—indeed, any Dedekind algebra—will serve as a surrogate for the natural numbers. This is thanks to the following trivial consequence:

Theorem infinite.1 (Arithmetical induction). Let \(N, s, o \) comprise a Dedekind algebra. Then for any set \(X \):

\[
\text{if } o \in X \text{ and } (\forall n \in X)(n \in X \rightarrow s(n) \in X), \text{ then } N \subseteq X.
\]

Proof. By the definition of a Dedekind algebra, \(N = \text{clo}(o) \). Now if both \(o \in X \) and \((\forall n \in N)(n \in X \rightarrow s(n) \in X) \), then \(N = \text{clo}(o) \subseteq X \). □

Since induction is characteristic of the natural numbers, the point is this. Given any Dedekind infinite set, we can form a Dedekind algebra, and use that algebra as our surrogate for the natural numbers.

Admittedly, **Theorem infinite.1** formulates induction in set-theoretic terms. But we can easily put the principle in terms which might be more familiar:

Corollary infinite.2. Let \(N, s, o \) comprise a Dedekind algebra. Then for any formula \(\varphi(x) \), which may have parameters:

\[
\text{if } \varphi(o) \text{ and } (\forall n \in N)(\varphi(n) \rightarrow \varphi(s(n))), \text{ then } (\forall n \in N)\varphi(n)
\]

Proof. Let \(X = \{n \in N : \varphi(n)\} \), and now use **Theorem infinite.1** □

In this result, we spoke of a formula “having parameters”. What this means, roughly, is that for any objects \(c_1, \ldots, c_k \), we can work with \(\varphi(x, c_1, \ldots, c_k) \). More precisely, we can state the result without mentioning “parameters” as follows. For any formula \(\varphi(x, v_1, \ldots, v_k) \), whose free variables are all displayed, we have:

\[
\forall v_1 \ldots \forall v_k((\varphi(o, v_1, \ldots, v_k) \land \\
(\forall x \in N)(\varphi(x, v_1, \ldots, v_k) \rightarrow \varphi(s(x, v_1, \ldots, v_k)))) \rightarrow \\
(\forall x \in N)\varphi(x, v_1, \ldots, v_k))
\]

Evidently, speaking of “having parameters” can make things much easier to read. (In ??, we will use this device rather frequently.)

Returning to Dedekind algebras: given any Dedekind algebra, we can also define the usual arithmetical functions of addition, multiplication and exponentiation. This is non-trivial, however, and it involves the technique of recursive definition. That is a technique which we shall introduce and justify much later, and in a much more general context. (Enthusiasts might want to revisit this
after ??, or perhaps read an alternative treatment, such as Potter 2004, pp. 95–8.) But, where \(N, s, o \) comprise a Dedekind algebra, we will ultimately be able to stipulate the following:

\[
\begin{align*}
 a + o &= a & a \times o &= o & a^o &= s(a) \\
 a + s(b) &= s(a + b) & a \times s(b) &= (a \times b) + a & a^{s(b)} &= a^b \times a
\end{align*}
\]

and show that these behave as one would hope.

\textbf{Photo Credits}

\textbf{Bibliography}