Before we depart from naïve set theory, we have one last naïve (but sophisticated!) proof to consider. This is a proof of Schröder-Bernstein (??): if \(A \preceq B \) and \(B \preceq A \) then \(A \approx B \); i.e., given injections \(f : A \to B \) and \(g : B \to A \) there is a bijection \(h : A \to B \).

In this chapter, we followed Dedekind's notion of closures. In fact, Dedekind provided a lovely proof of using this notion, and we will present it here. The proof closely follows Potter (2004, pp. 157–8), if you want a slightly different but essentially similar treatment. A little googling will also convince you that this is a theorem—rather like the irrationality of \(\sqrt{2} \)—for which many interesting and different proofs exist.

Using similar notation as ??, let
\[
\text{Clo}_f(B) = \bigcap\{X : B \subseteq X \text{ and } X \text{ is } f\text{-closed}\}
\]
for each set \(B \) and function \(f \). Defined thus, \(\text{Clo}_f(B) \) is the smallest \(f\)-closed set containing \(B \), in that:

Proposition infinite.1. For any function \(f \), and any \(B \):

1. \(B \subseteq \text{Clo}_f(B) \); and
2. \(\text{Clo}_f(B) \) is \(f\)-closed; and
3. if \(X \) is \(f\)-closed and \(B \subseteq X \), then \(\text{Clo}_f(B) \subseteq X \).

Proof. Exactly as in ??.

We need one last fact to get to Bernstein:

Proposition infinite.2. If \(A \subseteq B \subseteq C \) and \(A \approx C \), then \(A \approx B \approx C \).

Proof. Given a bijection \(f : C \to A \), let \(F = \text{Clo}_f(C \setminus B) \) and define a function \(g \) with domain \(C \) as follows:
\[
g(x) = \begin{cases}
 f(x) & \text{if } x \in F \\
 x & \text{otherwise}
\end{cases}
\]

We’ll show that \(g \) is a bijection from \(C \to B \), from which it will follow that \(g \circ f^{-1} : A \to B \) is a bijection, completing the proof.

First we claim that if \(x \in F \) but \(y \notin F \) then \(g(x) \neq g(y) \). For reductio suppose otherwise, so that \(y = g(y) = g(x) = f(x) \). Since \(x \in F \) and \(F \) is \(f\)-closed by Proposition infinite.1, we have \(y = f(x) \in F \), a contradiction.

Now suppose \(g(x) = g(y) \). So, by the above, \(x \in F \) iff \(y \in F \). If \(x, y \in F \), then \(f(x) = g(x) = g(y) = f(y) \) so that \(x = y \) since \(f \) is a bijection. If \(x, y \notin F \), then \(x = g(x) = g(y) = y \). So \(g \) is an injection.

It remains to show that \(\text{ran}(g) = B \). So fix \(x \in B \subseteq C \). If \(x \notin F \), then \(g(x) = x \). If \(x \in F \), then \(x = f(y) \) for some \(y \in F \), since \(x \in B \) and \(F \) is the smallest \(f\)-closed set extending \(C \setminus B \), so that \(g(y) = f(y) = x \).
Finally, here is the proof of the main result. Recall that given a function h and set D, we define $h[D] = \{h(x) : x \in D\}$.

Proof of Schröder-Berstein. Let $f: A \to B$ and $g: B \to A$ be injections. Since $f[A] \subseteq B$ we have that $g[f[A]] \subseteq g[B] \subseteq A$. Also, $g \circ f: A \to g[f[A]]$ is an injection since both g and f are; and indeed $g \circ f$ is a bijection, just by the way we defined its codomain. So $A \approx g[f[A]]$, and hence by Proposition infinite.2 there is a bijection $h: A \to g[B]$. Moreover, g^{-1} is a bijection $g[B] \to B$. So $g^{-1} \circ h: A \to B$ is a bijection. \qed

Photo Credits

Bibliography