Inverses of Functions fun.1

sfr:fun:inv: We think of functions as maps. An obvious question to ask about functions, explanation then, is whether the mapping can be "reversed." For instance, the successor function f(x) = x+1 can be reversed, in the sense that the function g(y) = y-1"undoes" what f does.

But we must be careful. Although the definition of q defines a function $\mathbb{Z} \to \mathbb{Z}$, it does not define a function $\mathbb{N} \to \mathbb{N}$, since $g(0) \notin \mathbb{N}$. So even in simple cases, it is not quite obvious whether a function can be reversed; it may depend on the domain and codomain.

This is made more precise by the notion of an inverse of a function.

Definition fun.1. A function $g: B \to A$ is an *inverse* of a function $f: A \to B$ if f(q(y)) = y and q(f(x)) = x for all $x \in A$ and $y \in B$.

If f has an inverse q, we often write f^{-1} instead of q.

Now we will determine when functions have inverses. A good candidate for explanation an inverse of $f: A \to B$ is $g: B \to A$ "defined by"

q(y) = "the" x such that f(x) = y.

But the scare quotes around "defined by" (and "the") suggest that this is not a definition. At least, it will not always work, with complete generality. For, in order for this definition to specify a function, there has to be one and only one x such that f(x) = y—the output of g has to be uniquely specified. Moreover, it has to be specified for every $y \in B$. If there are x_1 and $x_2 \in A$ with $x_1 \neq x_2$ but $f(x_1) = f(x_2)$, then g(y) would not be uniquely specified for $y = f(x_1) = f(x_2)$. And if there is no x at all such that f(x) = y, then q(y) is not specified at all. In other words, for q to be defined, f must be both injective and surjective.

sfr:fun:inv: **Proposition fun.2.** Every bijection has a unique inverse.

Proof. Exercise.

Problem fun.1. Prove Proposition fun.2. That is, show that if $f: A \to B$ is bijective, an inverse g of f exists. You have to define such a g, show that it is a function, and show that it is an inverse of f, i.e., f(q(y)) = y and q(f(x)) = xfor all $x \in A$ and $y \in B$.

explanation

However, there is a slightly more general way to extract inverses. We saw in ?? that every function f induces a surjection $f': A \to \operatorname{ran}(f)$ by letting f'(x) = f(x) for all $x \in A$. Clearly, if f is an injection, then f' is a bijection, so that it has a unique inverse by Proposition fun.2. By a very minor abuse of notation, we sometimes call the inverse of f' simply "the inverse of f."

Problem fun.2. Show that if $f: A \to B$ has an inverse g, then f is bijective.

Proposition fun.3. Every function f has at most one inverse. sfr:fun:inv:

prop:inverse-unique

prop:bijection-invers

inverses rev: b92204b (2021-04-17) by OLP / CC-BY

Proof. Exercise.

Problem fun.3. Prove Proposition fun.3. That is, show that if $g: B \to A$ and $g': B \to A$ are inverses of $f: A \to B$, then g = g', i.e., for all $y \in B$, g(y) = g'(y).

Photo Credits

Bibliography