fun.1 Inverses of Functions

One obvious question about functions is whether a given mapping can be “reversed.” For instance, the successor function \(f(x) = x + 1 \) can be reversed in the sense that the function \(g(y) = y - 1 \) “undoes” what \(f \) does. But we must be careful: While the definition of \(g \) defines a function \(\mathbb{Z} \to \mathbb{Z} \), it does not define a function \(\mathbb{N} \to \mathbb{N} \) (\(g(0) \notin \mathbb{N} \)). So even in simple cases, it is not quite obvious if functions can be reversed, and that it may depend on the domain and codomain. Let’s give a precise definition.

Definition fun.1. A function \(g: Y \to X \) is an inverse of a function \(f: X \to Y \) if \(f(g(y)) = y \) and \(g(f(x)) = x \) for all \(x \in X \) and \(y \in Y \).

When do functions have inverses? A good candidate for an inverse of \(f: X \to Y \) is \(g: Y \to X \) “defined by”

\[
g(y) = \text{“the” } x \text{ such that } f(x) = y.
\]

The scare quotes around “defined by” suggest that this is not a definition. At least, it is not in general. For in order for this definition to specify a function, there has to be one and only one \(x \) such that \(f(x) = y \)—the output of \(g \) has to be uniquely specified. Moreover, it has to be specified for every \(y \in Y \). If there are \(x_1 \) and \(x_2 \in X \) with \(x_1 \neq x_2 \) but \(f(x_1) = f(x_2) \), then \(g(y) \) would not be uniquely specified for \(y = f(x_1) = f(x_2) \). And if there is no \(x \) at all such that \(f(x) = y \), then \(g(y) \) is not specified at all. In other words, for \(g \) to be defined, \(f \) has to be injective and surjective.

Proposition fun.2. If \(f: X \to Y \) is bijective, \(f \) has a unique inverse \(f^{-1}: Y \to X \).

Proof. Exercise. \(\square \)

Problem fun.1. Show that if \(f \) is bijective, an inverse \(g \) of \(f \) exists, i.e., define such a \(g \), show that it is a function, and show that it is an inverse of \(f \), i.e., \(f(g(y)) = y \) and \(g(f(x)) = x \) for all \(x \in X \) and \(y \in Y \).

Problem fun.2. Show that if \(f: X \to Y \) has an inverse \(g \), then \(f \) is bijective.

Problem fun.3. Show that if \(g: Y \to X \) and \(g': Y \to X \) are inverses of \(f: X \to Y \), then \(g = g' \), i.e., for all \(y \in Y \), \(g(y) = g'(y) \).

Photo Credits

Bibliography