fun.1 Inverses of Functions

sfr:fun:inv: sec One obvious question about functions is whether a given mapping can be explanation "reversed." For instance, the successor function f(x) = x + 1 can be reversed in the sense that the function g(y) = y - 1 "undoes" what f does. But we must be careful: While the definition of g defines a function $\mathbb{Z} \to \mathbb{Z}$, it does not define a function $\mathbb{N} \to \mathbb{N}$ ($g(0) \notin \mathbb{N}$). So even in simple cases, it is not quite obvious if functions can be reversed, and that it may depend on the domain and codomain. Let's give a precise definition.

Definition fun.1. A function $g: Y \to X$ is an *inverse* of a function $f: X \to Y$ if f(g(y)) = y and g(f(x)) = x for all $x \in X$ and $y \in Y$.

When do functions have inverses? A good candidate for an inverse of explanation $f\colon X\to Y$ is $g\colon Y\to X$ "defined by"

$$g(y) =$$
 "the" x such that $f(x) = y$.

The scare quotes around "defined by" suggest that this is not a definition. At least, it is not in general. For in order for this definition to specify a function, there has to be one and only one x such that f(x) = y—the output of g has to be uniquely specified. Moreover, it has to be specified for every $y \in Y$. If there are x_1 and $x_2 \in X$ with $x_1 \neq x_2$ but $f(x_1) = f(x_2)$, then g(y) would not be uniquely specified for $y = f(x_1) = f(x_2)$. And if there is no x at all such that f(x) = y, then g(y) is not specified at all. In other words, for g to be defined, f has to be injective and surjective.

Proposition fun.2. If $f: X \to Y$ is bijective, f has a unique inverse $f^{-1}: Y \to X$.

Proof. Exercise.
$$\Box$$

Problem fun.1. Show that if f is bijective, an inverse g of f exists, i.e., define such a g, show that it is a function, and show that it is an inverse of f, i.e., f(g(y)) = y and g(f(x)) = x for all $x \in X$ and $y \in Y$.

Problem fun.2. Show that if $f: X \to Y$ has an inverse g, then f is bijective.

Problem fun.3. Show that if $g: Y \to X$ and $g': Y \to X$ are inverses of $f: X \to Y$, then g = g', i.e., for all $y \in Y$, g(y) = g'(y).

Photo Credits

Bibliography