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Chapter udf

Functions

fun.1 Basics

A function is a mapping which pairs each object of a given set with a single
partner in another set. For instance, the operation of adding 1 defines a func-
tion: each number n is paired with a unique number n 4+ 1. More generally,
functions may take pairs, triples, etc., of inputs and returns some kind of out-
put. Many functions are familiar to us from basic arithmetic. For instance,
addition and multiplication are functions. They take in two numbers and re-
turn a third. In this mathematical, abstract sense, a function is a black bozx:
what matters is only what output is paired with what input, not the method
for calculating the output.

Definition fun.1 (Function). A function f: X — Y is a mapping of each
element of X to an element of Y. We call X the domain of f and Y the
codomain of f. The elements of X are called inputs or arguments of f, and
the element of Y that is paired with an argument x by f is called the value
of f for argument x, written f(x).

The range ran(f) of f is the subset of the codomain consisting of the values
of f for some argument; ran(f) = {f(z) : x € X}.

Example fun.2. Multiplication takes pairs of natural numbers as inputs and
maps them to natural numbers as outputs, so goes from N x N (the domain)
to N (the codomain). As it turns out, the range is also N, since every n € N is
n x 1.

Multiplication is a function because it pairs each input—each pair of natural
numbers—with a single output: x: N2> — N. By contrast, the square root
operation applied to the domain N is not functional, since each positive integer
n has two square roots: y/n and —y/n. We can make it functional by only
returning the positive square root: v/ : N — R. The relation that pairs each
student in a class with their final grade is a function—mno student can get two
different final grades in the same class. The relation that pairs each student in
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Figure fun.1: A function is a mapping of each element of one set to an element of
another. An arrow points from an argument in the domain to the corresponding
value in the codomain.

a class with their parents is not a function—generally each student will have
at least two parents.

We can define functions by specifying in some precise way what the value
of the function is for every possible argment. Different ways of doing this are
by giving a formula, describing a method for computing the value, or listing
the values for each argument. However functions are defined, we must make
sure that for each argment we specify one, and only one, value.

Example fun.3. Let f: N — N be defined such that f(z) = x + 1. This is
a definition that specifies f as a function which takes in natural numbers and
outputs natural numbers. It tells us that, given a natural number z, f will
output its successor x + 1. In this case, the codomain N is not the range of f,
since the natural number 0 is not the successor of any natural number. The
range of f is the set of all positive integers, ZT.

Example fun.4. Let g: N — N be defined such that g(z) = z + 2 — 1. This
tells us that g is a function which takes in natural numbers and outputs natural
numbers. Given a natural number n, g will output the predecessor of the
successor of the successor of x, i.e., x + 1. Despite their different definitions, g
and f are the same function.

Functions f and ¢ defined above are the same because for any natural
number z, t+2—1=x+ 1. f and g pair each natural number with the same
output. The definitions for f and g specify the same mapping by means of
different equations, and so count as the same function.

Example fun.5. We can also define functions by cases. For instance, we could
define h: N — N by

z if  is even
hz)=92, .. .
=L if 2 is odd.
Since every natural number is either even or odd, the output of this function
will always be a natural number. Just remember that if you define a function

by cases, every possible input must fall into exactly one case. In some cases,
this will require a a proof that the cases are exhaustive and exclusive.
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Figure fun.2: A surjective function has every element of the codomain as a

value.
_ )\

Figure fun.3: An injective function never maps two different arguments to the
same value.

fun.2 Kinds of Functions

sfr:fun:kin:
**“ Definition fun.6 (Surjective function). A function f: X — Y is surjective iff
Y is also the range of f, i.e., for every y € Y there is at least one z € X such

that f(z) =y.

If you want to show that a function is surjective, then you need to show explanation
that every object in the codomain is the output of the function given some
input or other.

Definition fun.7 (Injective function). A function f: X — Y is injective iff
for each y € Y there is at most one x € X such that f(z) = y.

Any function pairs each possible input with a unique output. An injective explanation
function has a unique input for each possible output. If you want to show that
a function f is injective, you need to show that for any elements x and x’ of
the domain, if f(z) = f(2’), then x = 2’.
An example of a function which is neither injective, nor surjective, is the
constant function f: N — N where f(z) = 1.
An example of a function which is both injective and surjective is the iden-
tity function f: N — N where f(z) = x.
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Figure fun.4: A bijective function uniquely pairs the elements of the codomain
with those of the domain.

The successor function f: N — N where f(z) = 2 + 1 is injective, but not
surjective.
The function
if = is even

_J)3
f=) {fv;l if 2 is odd.

is surjective, but not injective.

Definition fun.8 (Bijection). A function f: X — Y is bijective iff it is both
surjective and injective. We call such a function a bijection from X to Y (or
between X and V).

fun.3 Inverses of Functions

One obvious question about functions is whether a given mapping can be “re-
versed.” For instance, the successor function f(x) = z + 1 can be reversed in
the sense that the function g(y) = y — 1 “undoes” what f does. But we must
be careful: While the definition of g defines a function Z — Z, it does not
define a function N — N (g(0) ¢ N). So even in simple cases, it is not quite
obvious if functions can be reversed, and that it may depend on the domain
and codomain. Let’s give a precise definition.

Definition fun.9. A function g: Y — X is an inverse of a function f: X — Y
if f(g(y)) =y and g(f(z)) =z forallze X andy €Y.

When do functions have inverses? A good candidate for an inverse of
f: X—>Yisg: Y — X “defined by”

g(y) = “the” x such that f(z) =y.

The scare quotes around “defined by” suggest that this is not a definition. At
least, it is not in general. For in order for this definition to specify a function,
there has to be one and only one x such that f(x) = y—the output of g has to
be uniquely specified. Moreover, it has to be specified for every y € Y. If there
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Figure fun.5: The composition g o f of two functions f and g.

are 1 and zo € X with 1 # z2 but f(x1) = f(x2), then g(y) would not be
uniquely specified for y = f(z1) = f(z2). And if there is no = at all such that
f(x) =y, then g(y) is not specified at all. In other words, for g to be defined,
f has to be injective and surjective.

Proposition fun.10. If f: X — Y is bijective, f has a unique inverse f ~1: Y —
X.

Proof. Exercise. O

Problem fun.1. Show that if f is bijective, an inverse g of f exists, i.e., define
such a g, show that it is a function, and show that it is an inverse of f, i.e.,
flg(y)) =y and g(f(z)) =z forallz € X and y € Y.

Problem fun.2. Show that if f: X — Y has an inverse g, then f is bijective.

Problem fun.3. Show thatifg: Y — X and ¢’: Y — X are inversesof f: X —
Y, then g =¢, ie., forally €Y, g(y) = ¢'(y).

fun.4 Composition of Functions

stefun:emp: We have already seen that the inverse f~! of a bijective function f is itself explanation
*° a function. It is also possible to compose functions f and g to define a new
function by first applying f and then g. Of course, this is only possible if the
ranges and domains match, i.e., the range of f must be a subset of the domain
of g.

Definition fun.11 (Composition). Let f: X — Y and ¢g: Y — Z. The
composition of f with g is the function (go f): X — Z, where (go f)(z) =

9(f ().

The function (go f): X — Z pairs each member of X with a member of Z. explanation
We specify which member of Z a member of X is paired with as follows—given
an input z € X, first apply the function f to x, which will output some y € Y.
Then apply the function g to y, which will output some z € Z.
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Example fun.12. Consider the functions f(x) = 2+ 1, and g(z) = 2x. What
function do you get when you compose these two? (go f)(x) = g(f(x)). So that
means for every natural number you give this function, you first add one, and
then you multiply the result by two. So their composition is (gof)(x) = 2(z+1).

Problem fun.4. Show that if f: X — Y and ¢g: Y — Z are both injective,
then go f: X — Z is injective.

Problem fun.5. Show that if f: X — Y and g: Y — Z are both surjective,
then go f: X — Z is surjective.

fun.5 Isomorphism

explanation An isomorphism is a bijection that preserves the structure of the sets it re- strifuniiso:

lates, where structure is a matter of the relationships that obtain between

the elements of the sets. Consider the following two sets X = {1,2,3} and

Y = {4,5,6}. These sets are both structured by the relations successor, less

than, and greater than. An isomorphism between the two sets is a bijection

that preserves those structures. So a bijective function f: X — Y is an iso-
morphism if, ¢ < j iff f(i) < f(j), ¢ > j iff f(i) > f(j), and j is the successor

of 4 iff f(j) is the successor of f(7).

Definition fun.13 (Isomorphism). Let U be the pair (X, R) and V be the
pair (Y, S) such that X and Y are sets and R and S are relations on X and ¥
respectively. A bijection f from X to Y is an isomorphism from U to V iff it
preserves the relational structure, that is, for any z; and x5 in X, (x1,22) € R

iff (f(x1), f(z2)) € S.

Example fun.14. Consider the following two sets X = {1,2,3} and ¥ =
{4,5,6}, and the relations less than and greater than. The function f: X — Y
where f(x) =7 — x is an isomorphism between (X, <) and (Y, >).

fun.6 Partial Functions

explanation It is sometimes useful to relax the definition of function so that it is not required sfr:fun:par:
that the output of the function is defined for all possible inputs. Such mappings °
are called partial functions.

Definition fun.15. A partial function f: X -+ Y is a mapping which assigns
to every element of X at most one element of Y. If f assigns an element of Y
to z € X, we say f(x) is defined, and otherwise undefined. If f(x) is defined,
we write f(z) |, otherwise f(z) 1. The domain of a partial function f is the
subset of X where it is defined, i.e., dom(f) = {z : f(z) |}.

Example fun.16. Every function f: X — Y is also a partial function. Partial
functions that are defined everywhere on X—i.e., what we so far have simply
called a function—are also called total functions.
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Example fun.17. The partial function f: R ++ R given by f(z) = 1/z is
undefined for x = 0, and defined everywhere else.

Problem fun.6. Given f: X -+ Y, define the partial function ¢g: ¥ + X
by: for any y € Y, if there is a unique € X such that f(z) = y, then
g(y) = z; otherwise g(y) 1. Show that if f is injective, then g(f(z)) = x for all
x € dom(f), and f(g(y)) =y for all y € ran(f).

fun.7 Functions and Relations

A function which maps elements of X to elements of Y obviously defines a
relation between X and Y, namely the relation which holds between x and
y iff f(z) = y. In fact, we might even—if we are interested in reducing the
building blocks of mathematics for instance—identify the function f with this
relation, i.e., with a set of pairs. This then raises the question: which relations
define functions in this way?

Definition fun.18 (Graph of a function). Let f: X - Y be a partial function.
The graph of f is the relation Ry C X x Y defined by

Ry = {(z,y) : f(x) = y}.

Proposition fun.19. Suppose R C X XY has the property that whenever Rxy
and Rxy' then y =1vy'. Then R is the graph of the partial function f: X =Y
defined by: if there is a y such that Rxy, then f(x) =y, otherwise f(x) . If
R is also serial, i.e., for each x € X there is ay € Y such that Rxy, then f is
total.

Proof. Suppose there is a y such that Rxy. If there were another 3’ # y such
that Rxy’, the condition on R would be violated. Hence, if there is a y such
that Rxy, that y is unique, and so f is well-defined. Obviously, Ry = R and f
is total if R is serial. O

Problem fun.7. Suppose f: X — Y and g: Y — Z. Show that the graph of
(go f)is Ry | Ry.
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