fun.1 Functions and Relations

A function which maps elements of X to elements of Y obviously defines a relation between X and Y, namely the relation which holds between x and y iff $f(x) = y$. In fact, we might even—if we are interested in reducing the building blocks of mathematics for instance—identify the function f with this relation, i.e., with a set of pairs. This then raises the question: which relations define functions in this way?

Definition fun.1 (Graph of a function). Let $f : X \rightarrow Y$ be a partial function. The graph of f is the relation $R_f \subseteq X \times Y$ defined by

$$R_f = \{ (x, y) : f(x) = y \}.$$

Proposition fun.2. Suppose $R \subseteq X \times Y$ has the property that whenever Rxy and Rxy' then $y = y'$. Then R is the graph of the partial function $f : X \rightarrow Y$ defined by: if there is a y such that Rxy, then $f(x) = y$, otherwise $f(x) \uparrow$. If R is also serial, i.e., for each $x \in X$ there is a $y \in Y$ such that Rxy, then f is total.

Proof. Suppose there is a y such that Rxy. If there were another $y' \neq y$ such that Rxy', the condition on R would be violated. Hence, if there is a y such that Rxy, that y is unique, and so f is well-defined. Obviously, $R_f = R$ and f is total if R is serial. \hfill \Box

Problem fun.1. Suppose $f : X \rightarrow Y$ and $g : Y \rightarrow Z$. Show that the graph of $(g \circ f)$ is $R_f \mid R_g$.

Photo Credits

Bibliography