fun.1 Kinds of Functions

Definition fun.1 (Surjective function). A function \(f : X \rightarrow Y \) is surjective iff \(Y \) is also the range of \(f \), i.e., for every \(y \in Y \) there is at least one \(x \in X \) such that \(f(x) = y \).

If you want to show that a function is surjective, then you need to show that every object in the codomain is the output of the function given some input or other.

Definition fun.2 (Injective function). A function \(f : X \rightarrow Y \) is injective iff for each \(y \in Y \) there is at most one \(x \in X \) such that \(f(x) = y \).

Any function pairs each possible input with a unique output. An injective function has a unique input for each possible output. If you want to show that a function \(f \) is injective, you need to show that for any elements \(x \) and \(x' \) of the domain, if \(f(x) = f(x') \), then \(x = x' \).

An example of a function which is neither injective, nor surjective, is the constant function \(f : \mathbb{N} \rightarrow \mathbb{N} \) where \(f(x) = 1 \).

An example of a function which is both injective and surjective is the identity function \(f : \mathbb{N} \rightarrow \mathbb{N} \) where \(f(x) = x \).
The successor function $f : \mathbb{N} \to \mathbb{N}$ where $f(x) = x + 1$ is injective, but not surjective.

The function

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \ \text{is even} \\ \frac{x+1}{2} & \text{if } x \ \text{is odd} \end{cases}$$

is surjective, but not injective.

Definition fun.3 (Bijection). A function $f : X \to Y$ is **bijective** iff it is both surjective and injective. We call such a function a **bijection** from X to Y (or between X and Y).

Photo Credits

Bibliography