fun.1 Composition of Functions

We can define a new function by composing two functions, \(f \) and \(g \), i.e., by first applying \(f \) and then \(g \). Of course, this is only possible if the ranges and domains match, i.e., the range of \(f \) must be a subset of the domain of \(g \).

A diagram might help to explain the idea of composition. In Figure 1, we depict two functions \(f: A \to B \) and \(g: B \to C \) and their composition \((g \circ f)\). The function \((g \circ f): A \to C\) pairs each element of \(A \) with an element of \(C \). We specify which element of \(C \) an element of \(A \) is paired with as follows: given an input \(x \in A \), first apply the function \(f \) to \(x \), which will output some \(f(x) = y \in B \), then apply the function \(g \) to \(y \), which will output some \(g(f(x)) = g(y) = z \in C \).

Definition fun.1 (Composition). Let \(f: A \to B \) and \(g: B \to C \) be functions. The composition of \(f \) with \(g \) is \(g \circ f: A \to C \), where \((g \circ f)(x) = g(f(x))\).

Example fun.2. Consider the functions \(f(x) = x + 1 \), and \(g(x) = 2x \). Since \((g \circ f)(x) = g(f(x))\), for each input \(x \) you must first take its successor, then multiply the result by two. So their composition is given by \((g \circ f)(x) = 2(x+1)\).

Problem fun.1. Show that if \(f: A \to B \) and \(g: B \to C \) are both injective, then \(g \circ f: A \to C \) is injective.

Problem fun.2. Show that if \(f: A \to B \) and \(g: B \to C \) are both surjective, then \(g \circ f: A \to C \) is surjective.

Problem fun.3. Suppose \(f: A \to B \) and \(g: B \to C \). Show that the graph of \(g \circ f \) is \(R_f \mid R_g \).
Photo Credits

Bibliography