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Throughout this chapter, we claimed that certain definitions behave “as they
ought”. In this technical appendix, we will spell out what we mean, and (sketch
how to) show that the definitions do behave “correctly”.

In ??, we defined addition and multiplication on Z. We want to show that,
as defined, they endow Z with the structure we “would want” it to have. In
particular, the structure in question is that of a commutative ring.

Definition arith.1. A commutative ring is a set S, equipped with specific
elements 0 and 1 and operations + and ×, satisfying these eight formulas:

Associativity a+ (b+ c) = (a+ b) + c

(a× b)× c = a× (b× c)

Commutativity a+ b = b+ a

a× b = b× a

Identities a+ 0 = a

a× 1 = a

Additive Inverse (∃b ∈ S)0 = a+ b

Distributivity a× (b+ c) = (a× b) + (a× c)

Implicitly, these are all bound with universal quantifiers restricted to S. And
note that the elements 0 and 1 here need not be the natural numbers with the
same name.

So, to check that the integers form a commutative ring, we just need to
check that we meet these eight conditions. None of the conditions is difficult
to establish, but this is a bit laborious. For example, here is how to prove
Associativity, in the case of addition:

Proof. Fix i, j, k ∈ Z. So there are a1, b1, a2, b2, a3, b3 ∈ N such that i = [a1, b1]
and j = [a2, b2] and k = [a3, b3]. (For legibility, we write “[x, y]” rather than
“[x, y]∼”; we’ll do this throughout this section.) Now:

i+ (j + k) = [a1, b1] + ([a2, b2] + [a3, b3])

= [a1, b1] + [a2 + a3, b2 + b3]

= [a1 + (a2 + a3), b1 + (b2 + b3)]

= [(a1 + a2) + a3, (b1 + b2) + b3]

= [a1 + a2, b1 + b2] + [a3, b3]

= ([a1, b1] + [a2, b2]) + [a3, b3]

= (i+ j) + k

helping ourselves freely to the behavior of addition on N.

Equally, here is how to prove Additive Inverse:
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Proof. Fix i ∈ Z, so that i = [a, b] for some a, b ∈ N. Let j = [b, a] ∈ Z.
Helping ourselves to the behaviour of the naturals, (a+ b)+ 0 = 0+ (a+ b), so
that ⟨a+ b, b+ a⟩ ∼Z ⟨0, 0⟩ by definition, and hence [a+ b, b+ a] = [0, 0] = 0Z.
So now i+ j = [a, b] + [b, a] = [a+ b, b+ a] = [0, 0] = 0Z.

And here is a proof of Distributivity :

Proof. As above, fix i = [a1, b1] and j = [a2, b2] and k = [a3, b3]. Now:

i× (j + k) = [a1, b1] × ([a2, b2] + [a3, b3])

= [a1, b1] × [a2 + a3, b2 + b3]

= [a1(a2 + a3) + b1(b2 + b3), a1(b2 + b3) + b1(a2 + a3)]

= [a1a2 + a1a3 + b1b2 + b1b3, a1b2 + a1b3 + a2b1 + a3b1]

= [a1a2 + b1b2, a1b2 + a2b1] + [a1a3 + b1b3, a1b3 + a3b1]

= ([a1, b1] × [a2, b2]) + ([a1, b1] × [a3, b3])

= (i× j) + (i× k)

We leave it as an exercise to prove the remaining five conditions. Having
done that, we have shown that Z constitutes a commutative ring, i.e., that
addition and multiplication (as defined) behave as they should.

Problem arith.1. Prove that Z is a commutative ring.

But our task is not over. As well as defining addition and multiplication
over Z, we defined an ordering relation, ≤, and we must check that this behaves
as it should. In more detail, we must show that Z constitutes an ordered ring.1

Definition arith.2. An ordered ring is a commutative ring which is also
equipped with a total order relation, ≤, such that:

a ≤ b→ a+ c ≤ b+ c

(a ≤ b ∧ 0 ≤ c)→ a× c ≤ b× c

Problem arith.2. Prove that Z is an ordered ring.

As before, it is laborious but routine to show that Z, as constructed, is an
ordered ring. We will leave that to you.

This takes care of the integers. But now we need to show very similar things
of the rationals. In particular, we now need to show that the rationals form an
ordered field, under our given definitions of +, ×, and ≤:

Definition arith.3. sfr:arith:check:

orderedfield

An ordered field is an ordered ring which also satisfies:

Multiplicative Inverse (∀a ∈ S \ {0})(∃b ∈ S)a× b = 1

1Recall from ?? that a total order is a relation which is reflexive, transitive, anti-
symmetric, and connected. In the context of order relations, connectedness is sometimes
called trichotomy, since for any a and b we have a ≤ b ∨ a = b ∨ a ≥ b.
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Once you have shown that Z constitutes an ordered ring, it is easy but
laborious to show that Q constitutes an ordered field.

Problem arith.3. Prove that Q is an ordered field.

Having dealt with the integers and the rationals, it only remains to deal
with the reals. In particular, we need to show that R constitutes a complete
ordered field, i.e., an ordered field with the Completeness Property. Now, ??
established that R has the Completeness Property. However, it remains to run
through the (tedious) of checking that R is an ordered field.

Before tearing off into that laborious exercise, we need to check some more
“immediate” things. For example, we need a guarantee that α+ β, as defined,
is indeed a cut, for any cuts α and β. Here is a proof of that fact:

Proof. Since α and β are both cuts, α + β = {p + q : p ∈ α ∧ q ∈ β} is a
non-empty proper subset of Q. Now suppose x < p + q for some p ∈ α and
q ∈ β. Then x − p < q, so x − p ∈ β, and x = p + (x − p) ∈ α + β. So
α + β is an initial segment of Q. Finally, for any p + q ∈ α + β, since α and
β are both cuts, there are p1 ∈ α and q1 ∈ β such that p < p1 and q < q1; so
p+ q < p1 + q1 ∈ α+ β; so α+ β has no maximum.

Similar efforts will allow you to check that α − β and α × β and α ÷ β
are cuts (in the last case, ignoring the case where β is the zero-cut). Again,
though, we will simply leave this to you.

Problem arith.4. Prove that R is an ordered field.

But here is a small loose end to tidy up. In ??, we suggest that we can take√
2 = {p ∈ Q : p < 0 or p2 < 2}. But we do need to show that this set is a cut.

Here is a proof of that fact:

Proof. Clearly this is a nonempty proper initial segment of the rationals; so
it suffices to show that it has no maximum. In particular, it suffices to show
that, where p is a positive rational with p2 < 2 and q = 2p+2

p+2 , both p < q and

q2 < 2. To see that p < q, just note:

p2 < 2

p2 + 2p < 2 + 2p

p(p+ 2) < 2 + 2p

p < 2+2p
p+2 = q
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To see that q2 < 2, just note:

p2 < 2

2p2 + 4p+ 2 < p2 + 4p+ 4

4p2 + 8p+ 4 < 2(p2 + 4p+ 4)

(2p+ 2)2 < 2(p+ 2)2

(2p+2)2

(p+2)2 < 2

q2 < 2
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